3D porous α-Ni(OH)₂ nanostructure interconnected with carbon black as

high-performance gas sensing material for NO₂ at room temperature

Zhenyu Chu^a, Hongxin Sun^a, He Xu^a, Jiao Zhou^a, Guo Zhang^a, Yu Xie^c, Li Li^{*a, b}, Keying Shi^{*a}

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; Key

Laboratory of Physical Chemistry, School of Chemistry and Materials Science, Heilongjiang

University, Harbin 150080, P. R. China.

^b Key Laboratory of Chemical Engineering Process & Technology for High-efficiency

Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,

P. R. China.

^c Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063, P.R. China

Corresponding Author Fax: +86 451 8667 3647; Tel: +86 451 8660 9141 E-mail: <u>llwjjhlju@sina.cn</u>, <u>shikeying2008@163.com</u>

Fig. S1 TEM/HRTEM images of Carbon black.

Fig.S2. STEM image/EDX mapping of the NiCB20: (a) Bright field image; (b), (c) and (d) corresponding to the Ni, O and C elemental mapping, respectively.

Fig. S3 TEM images of porous α -Ni(OH)₂ nanosheets.

Fig. S4 HRTEM images of α -Ni(OH)₂ nanosheet of Fig. S2(b).

Wavenumber (cm ⁻¹)	3644	3498	2957, 2927, 2855,	2239	1602	1480 1487	1378	1130, 1037, 1009	640	481
Functional group	-OH	ОНН ₂ О	-CH ₃ , -CH ₂ (DBS ⁻)	C≡N (OCN ⁻ or CNO ⁻)	C=C (benz- ene)	CO ₃ ²⁻	NO ₃ -	SO4 ²⁻ (DBS ⁻)	Ni-OH	Ni-O

Table S1 The data of FT-IR spectrum for the samples

Fig.S5 the resistance transients curve of the sample

Concentrations		100ppm	50ppm	30ppm	10ppm	5ppm	3ppm	1ppm	0.5ppm
α-Ni(OH) ₂	Sensitivity (%)	31.1	26.4	21.5	12.1	6.4			
	Response time (s)	8	11.3	12.7	14	15.7			
NiCB5	Sensitivity (%)	55.2	49.9	41.8	32.6	12.8	6.4		
	Response time (s)	7.3	10	13.3	14	15.3	18.3		
NiCB20	Sensitivity (%)	62.5	61.2	56.6	47.5	29.1	24.1	10.2	4.7
	Response time (s)	2	5	5.3	10	12.7	13.3	14	16.7
NiCB40	Sensitivity (%)	21.1	16.6	9.2	6.9				
	Response time (s)	11.3	14	15.3	16.7				

Table S2 The response-recovery results of the four samples to NO_2 at room temperature (RT: 22 °C, RH: 26%)

Conc	entrations	100ppm	10ppm	1ppm	0.5ppm
NiCB20	Response time (s)	2.2	8.1.	15.7	18.3
	Response (%)	61.8	45.3	11.5	5.8

Table.S3 The response data of NiCB20 with single cycle times

Fig. S6 (a) The Mott-Schottky curves of α -Ni(OH)₂ and NiCB20; (b) The EIS curves of α -Ni(OH)₂ and NiCB20 samples. The left inset is the corresponding equivalent circuit model.

Table S4 The fitted impedance parameters of α -Ni(OH)₂ and NiCB20 samples

Samples\ parameters	R_{Ω}	С	R _{ct}
α -Ni(OH ₎₂	579.5	5.57×10 ⁻⁶	2740
NiCB20	439.0	2.712×10 ⁻⁶	1517