RSC Advances

Synthesis and characterization of glycidyl polymer-based poly(ionic liquid)s: Highly designable polyelectrolytes with poly(ethylene glycol) main chain

T. Ikeda*, I. Nagao, S. Moriyama. J.-D. Kim

Supporting Information

Table of contents

1.	IR spectra of cationic GTPs	S2
2.	¹ H and ¹³ C NMR spectra of cationic alkynes and GTPs	S3
3.	GPC data of GTP-C-Ph	S14
4.	DSC data of cationic alkyne and GTPs	S14
5.	Thermal decomposition experiment	S15
6.	Results of impedance measurement	S16

Correspondence Address

Dr. Taichi Ikeda

Polymer Materials Unit National Institute for Materials Science Namiki 1-1, 305-0044 Tsukuba, JAPAN

1. IR spectra

$\begin{array}{ll} \mbox{Figure S1.} & IR \mbox{ data of (a) GAP, (b) GTP-C4-Im} \cdot Tf_2N, (c) \mbox{ GTP-C4-Pyri} \cdot Tf_2N, (d) \mbox{ GTP-C4-Pyrro} \cdot Tf_2N, (e) \mbox{ GTP-EG4-Im} \cdot Tf_2N, (f) \mbox{ GTP-EG4-Pyri} \cdot Tf_2N, (g) \mbox{ GTP-EG4-Pyrro} \cdot Tf_2N. \end{array}$

GAP has strong IR peak of azide bond at 2100 cm⁻¹. No azide bond peak was observed for cationic GTPs

2. ¹H and ¹³C NMR spectra

Figure S2. ¹H and ¹³C NMR of Im-C4-alkyne·Tf₂N (DMSO-*d*₆).

Figure S3. ¹H and ¹³C NMR of **Pyri-C4-alkyne·Tf₂N** (DMSO-*d*₆).

Figure S4. ¹H and ¹³C NMR of **Pyrro-C4-alkyne·Tf₂N** (DMSO-*d*₆).

Figure S5. ¹H and ¹³C NMR of Im-EG4-alkyne·Tf₂N (DMSO-*d*₆).

Figure S6. ¹H and ¹³C NMR of Pyri-EG4-alkyne·Tf₂N (DMSO-*d*₆).

Figure S7. ¹H and ¹³C NMR of Pyrro-EG4-alkyne•Tf₂N (DMSO-*d*₆).

Figure S8. ¹H and ¹³C NMR of GTP-C4-Im·Tf₂N (DMSO-*d*₆).

Figure S9. ¹H and ¹³C NMR of GTP-C4-Pyrro·Tf₂N (DMSO-*d*₆).

Figure S10. ¹H and ¹³C NMR of GTP-EG4-Im·Tf₂N (DMSO-*d*₆).

Figure S11. ¹H and ¹³C NMR of **GTP-EG4-Pyri·Tf₂N** (DMSO-*d*₆).

Figure S12. ¹H and ¹³C NMR of GTP-EG4-Pyrro·Tf₂N (DMSO- d_6).

3. GPC measurement

Figure S13 GPC chart of **GTP-C-Ph**. M_n and M_w of **GTP-C-Ph** were determined to be 163 kDa and 319 kDa, respectively.

4. DSC measurements

 $\label{eq:Figure S14} \begin{array}{l} DSC \ traces \ of (a) \ Im-C4-alkyne \cdot Tf_2N, (b) \ Pyri-C4-alkyne \cdot Tf_2N, (c) \ Pyrro-C4-alkyne \cdot Tf_2N, (d) \ Im-EG4-alkyne \cdot Tf_2N, (e) \ Pyri-EG4-alkyne \cdot Tf_2N, (f) \ Pyrro-EG4-alkyne \cdot Tf_2N. \end{array}$

Figure S15 DSC traces of (a) GTP-C4-Im·Tf₂N, (b) GTP-C4-Pyri·Tf₂N, (c) GTP-C4-Pyrro·Tf₂N, (d) GTP-EG4-Im·Tf₂N, (e) GTP-EG4-Pyri·Tf₂N, (f) GTP-EG4-Pyrro·Tf₂N.

5. Thermal decomposition experiment

Figure S16 ¹H NMR spectrum of partially-decomposed GTP-C4-Pyri·Tf₂N (DMSO-*d*₆).

6. Impedance measurement

Figure S17 Conductivity vs frequency at temperatures from 0 °C to 120 °C for GTP-EG4-Pyrro·Tf₂N

Figure S18 The plot of tan δ vs angular frequency from 0 °C to 70 °C for **GTP-EG4-Im·Tf₂N**. The dot curves were obtained from fitting by equation (2).

Cationic GTPs	$\sigma_{\!\infty}$	D_{σ}	T_{σ}	μ_{∞}	D_{μ}	T_{μ}
	$S cm^{-1}$		Κ	$cm^2V^{-1}s^{-1}$		Κ
GTP-C4-Im·Tf ₂ N	0.109	4.11	227	0.053	2.04	242
GTP-C4-Pyri·Tf ₂ N	0.113	3.23	240	0.069	1.14	265
GTP-C4-Pyrro·Tf ₂ N	0.060	3.45	239	0.021	1.26	262
GTP-EG4-Im·Tf ₂ N	0.076	3.72	218	0.030	1.79	232
GTP-EG4-Pyri·Tf ₂ N	0.148	3.93	220	0.046	1.12	250
GTP-EG4-Pyrro·Tf ₂ N	0.092	3.65	215	0.109	1.82	231

Table S1 Parameters of VFT equations for ionic conductivity and ion mobility (eqns. 1 and 6).