## **Supporting Information**

Recyclable magnetic CoFe<sub>2</sub>O<sub>4</sub>/BiOX (X=Cl, Br and I) microflowers for

photocatalytic water treatments contaminated with methyl orange,

## rhodamine B, methylene blue, and a mixed dyes

Young In Choi,<sup>1</sup> Young-Il Kim,<sup>1</sup> Dae Won Cho,<sup>1</sup> Jung-Soo Kang,<sup>2</sup> K. T. Leung,<sup>2</sup> and

Youngku Sohn<sup>1,\*</sup>

<sup>1</sup>Department of Chemistry, Yeungnam University, Gyeongsan 712-749, Republic of

Korea

<sup>2</sup>WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario

N2L 3G1, Canada

\* Corresponding author e-mail:youngkusohn@ynu.ac.kr

| Catalysts                                                             | Experimental                                                        | Test systems         |
|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|
|                                                                       | conditions                                                          |                      |
| BiOCl–SrFe <sub>12</sub> O <sub>19</sub>                              | SrFe <sub>12</sub> O <sub>19</sub> + Bi nitrate + NaCl,             | MB under UV and      |
| nanoplates <sup>32</sup>                                              | dilute HCl                                                          | visible,             |
| dandelion-like                                                        | Fe <sub>3</sub> O <sub>4</sub> @C (by solvothermal                  | RhB under visible    |
| Fe <sub>3</sub> O <sub>4</sub> @C@BiOCl <sup>33</sup>                 | method with glucose) + Bi nitrate                                   |                      |
|                                                                       | +KCl in EG                                                          |                      |
| BiOBr@SiO <sub>2</sub> @Fe <sub>3</sub> O <sub>4</sub> <sup>34</sup>  | SiO <sub>2</sub> @Fe <sub>3</sub> O <sub>4</sub> (by Stober method) | 2,2-bis(4-           |
|                                                                       | + Bi nitrate + CTAB in EG                                           | hydroxyphenyl)       |
|                                                                       |                                                                     | propane (BPA) under  |
|                                                                       |                                                                     | UV and visible       |
| Fe <sub>3</sub> O <sub>4</sub> /BiOCl <sup>35</sup>                   | Fe <sub>3</sub> O <sub>4</sub> NPs + Bi nitrate +                   | RhB and MB under     |
|                                                                       | chloroform, dilute nitric acid                                      | visible              |
| Flower like                                                           | Fe <sub>3</sub> O <sub>4</sub> NPs + BiCl <sub>3</sub> + dilute HCl | RhB under visible    |
| Fe <sub>3</sub> O <sub>4</sub> /BiOCl <sup>36</sup>                   |                                                                     |                      |
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> @BiOBr <sup>37</sup> | core-shell Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> NPs     | RhB under visible    |
|                                                                       | + Bi nitrate + KBr in EG                                            |                      |
| BiOBr/Fe <sub>2</sub> O <sub>3</sub>                                  | Fe <sub>3</sub> O <sub>4</sub> NPs + Bi nitrate + CTAB              | RhB and MO under     |
| microspheres <sup>38</sup>                                            | in EG                                                               | visible              |
| BiOBr–ZnFe <sub>2</sub> O <sub>4</sub>                                | ZnFe <sub>2</sub> O <sub>4</sub> + Bi nitrate + KBr                 | RhB under visible    |
| microflowers <sup>39</sup>                                            | under ultrasonication                                               |                      |
| Fe <sub>3</sub> O <sub>4</sub> /BiOI flakes <sup>40</sup>             | $Fe_3O_4$ + Bi nitrate +KI in water                                 | RhB under visible    |
|                                                                       |                                                                     |                      |
| CoFe <sub>2</sub> O <sub>4</sub> /BiOX (X=Cl,                         | $CoFe_2O_4$ + Bi nitrate + KX in EG                                 | Mixed dye (MO + RhB  |
| Br, I) microflowers                                                   | (120°C, 12 hrs)                                                     | + MB), Rh B          |
| (this work)                                                           |                                                                     | under UV and visible |

 Table S1. Literature reviews for magnetic hybrid BiOX photocatalysts.



(a)  $CoFe_2O_4$  NPs (b)  $CoFe_2O_4/BiOCl$ 



(c)  $CoFe_2O_4/BiOBr$  (d)  $CoFe_2O_4/BiOI$ 

**Figure S1**. EDX analysis of the  $CoFe_2O_4$  NPs and  $CoFe_2O_4/BiOX$  (X= Cl, Br and I) microflowers.



Figure S2. FT-IR spectra of the  $CoFe_2O_4/BiOX$  (X= Cl, Br and I) and BiOX microflowers.



**Figure S3**. Magnified magnetization (M–H) curves for  $CoFe_2O_4$  NPs (left) and  $CoFe_2O_4$ /BiOX (X= Cl: red color, Br: black color and I: blue color) microflowers (right) with applied magnetic fields from -4.5 to 4.5 kOe.



Figure S4. Powder sample dispersed in a dye solution is easily attracted by a magnet.



**Figure S5**. Adsorption (in dark) and photodegradation (under UV and visible lights) tests of RhB (20 mg/L, 100 mL) over 25 mg CoFe<sub>2</sub>O<sub>4</sub>/BiOBr microflowers. The insets show the corresponding photographs displaying a change in dye color with the photodegradation time.



**Figure S6**. Adsorption (in dark) and photodegradation (under visible lights) tests of MO and MB (50 mL) over 25 mg CoFe<sub>2</sub>O<sub>4</sub>/BiOX microflowers. Dye concentrations were 10 mg/L for CoFe<sub>2</sub>O<sub>4</sub>/BiOCl and CoFe<sub>2</sub>O<sub>4</sub>/BiOBr, and 20 mg/L for CoFe<sub>2</sub>O<sub>4</sub>/BiOI. The insets show the corresponding photographs displaying a change in the dye color with photodegradation time.



**Figure S7**. Power X-ray diffraction patterns of  $CoFe_2O_4/BiOX$  (X= Cl, Br and I) microflowers after photocatalytic dye degradation experiments.



Figure S8. Recycability tests of the catalyst samples.