Electronic Supplementary Information

New insights into the asymmetric Diels-Alder reaction: the Endo-and S-selective retro-Diels-Alder reaction

$\mathrm{Na} \mathrm{Li}^{\mathrm{a}, \mathrm{b}}$, Xianrui Liang ${ }^{\mathrm{a}, \mathrm{b}}$, and Weike $\mathrm{Su}^{\mathrm{a} *}$
${ }^{a}$ Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
${ }^{b}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.

E-mail: pharmlab@zjut.edu.cn; Tel: + 8657188320899.

Contents

General Experimental Details S2-S4
General Information S2
The synthesis of imidazolethione catalysts. S2
General procedure for the synthesis of 3-Phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde. S2
Table S1 Imidazolethione-catalyzed asymmetric Diels-Alder reactions. S3
Table S2 Optimization of reaction conditions by using different solvents S3
Table S3 Optimization of reaction conditions by using different acid co-catalysts. S4
Figure S1 The changes in ee of both adducts in Diels-Alder reaction over the time. S4
Figure S2 The stability of isolated aldehyde adducts in $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ system. S5
Table S4 Enantioselectivity of various substrates in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ system. S5
Experimental characterization data for compounds S6-S9
NMR spectra and HPLC analyses for products. S10-S44
NMR spectra of products S10-S18
HPLC spectra of products. S19-S27
HPLC spectra for Table 2 in manuscript S28-S31
HPLC spectra for Figure 1 in manuscript S31-S37
HPLC spectra for Figure 2 in manuscript S38-S41
HPLC spectra for Figure S2 in ESI S41-S44
The molecular models and calculation results. S44-S45
References. S45

General Experimental Details

General Information:

All commercial solvents and reagents were used as obtained without further purification. Column chromatography was performed using silica-gel (200-400 mesh). High resolution Mass spectra were were obtained using Bruker micrOTOF-Q II. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at VARIAN- 400 operating at 400 MHz and 100 MHz respectively, the chemical shifts were referenced to internal tetramethylsilane (TMS, $\delta=0.0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$, the central line of $\mathrm{CDCl}_{3}(\delta=$ 77.0 ppm) for ${ }^{13} \mathrm{C}$. Enantiomeric excesses of products were determined by HPLC using a Daicel Chiralcel OD-H, OJ-H column and eluting with hexane $/ i-\mathrm{PrOH}$.

The synthesis of imidazolethione catalysts:

Catalysts 1a-d were prepared according to the literatures. ${ }^{[1-4]}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[1-4]}$

General procedure for the synthesis of 3-Phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde

To a solution of catalyst $1 \mathrm{a}(0.012 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1.9 \mathrm{~mL} / 0.1 \mathrm{~mL})$ was added concentrated hydrochloric acid $(0.005 \mathrm{~g}, 0.05 \mathrm{mmol})$ and trans-cinnamaldehyde $(0.132 \mathrm{~g}, 1 \mathrm{mmol})$. The solution was stirred for 1-2 minutes before the addition of freshly distilled cyclopentadiene ($0.198 \mathrm{~g}, 3 \mathrm{mmol}$). The reaction was stirred at room temperature for 12 h until the reaction was judged to be complete by TLC. After removing $\mathrm{CH}_{3} \mathrm{OH}$ under vacuo, the crude product dimethyl acetal was hydrolyzed in TFA: $\mathrm{H}_{2} \mathrm{O}: \mathrm{CHCl}_{3}(1: 1: 2)$. The solution was stirred for 2 h at room temperature, followed by neutralization by sat. aq. NaHCO_{3} and extraction with $\mathrm{Et}_{2} \mathrm{O}$. The organic solvent was removed with a rotary evaporator. The residue was purified silica-gel chromatography (petroleum ether/EtOAc: 15:1) to afford the desired product. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

Table S1 Imidazolethione-catalyzed asymmetric Diels-Alder reactions

	 1a: $\mathrm{R}_{1}=\mathrm{Bn}, \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{CH}_{3}$ 1b: $R_{1}=B n, R_{2}=H, R_{3}=t-B u t y l$ 1c: $R_{1}=B n, R_{2}, R_{3}=$ Cyclohexyl 1d: $\mathrm{R}_{1}=$ Indolyl, $\mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{CH}_{3}$ 1				
Entry	Catalyst	Yield ${ }^{\text {b }}$ (\%)	exolendo ${ }^{\text {c }}$	$e e^{d}(\%)$	
				exo	endo
1	1a	92	1.3:1	59	56
2	1b	83	1.3:1	50	0
3	1c	80	1.3:1	40	23
4	1d	91	1.2:1	67	43

${ }^{a}$ Reaction condition: trans-cinnamaldehyde (1.0 mmol), cyclopentadiene (5.0 mmol), $\mathrm{CH}_{3} \mathrm{CN}(1.9$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, catalyst ($10 \mathrm{~mol} \%$), TFA ($10 \mathrm{~mol} \%$), r.t., $12 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ exo/endo selectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of a crude reaction mixture. ${ }^{d}$ Enantiomeric excess was determined by HPLC analysis after conversion to the corresponding alcohol.

Table S2 Optimization of reaction conditions by using different solvents.
Entry
${ }^{a}$ Reaction condition: trans-cinnamaldehyde (1.0 mmol), cyclopentadiene (5.0 mmol), organic solvent (1.9 mL), $\mathrm{H}_{2} \mathrm{O}$ (0.1 mL), catalyst $\mathbf{1 a}(10 \mathrm{~mol} \%)$, TFA ($10 \mathrm{~mol} \%$), r.t., for $12 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ exo/endo selectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of a crude reaction mixture. ${ }^{d}$ Enantiomeric excess determined by HPLC analysis. ${ }^{e}$ Not determined.

Table S3 Optimization of reaction conditions by using different acid co-catalysts.

Entry	Acid	$T\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield ${ }^{\text {b }}$ (\%)	exolendo ${ }^{\text {c }}$	$e e^{d}(\%)$	
						exo	endo
1	TFA	25	12	92	$1.2: 1$	88	87
2	TfOH	25	12	93	1.2:1	87	86
3	HBF_{4}	25	12	90	1.2:1	84	83
4	p-TSA	25	12	89	1.1:1	83	83
5	HCl	25	12	95	1.2:1	95	94
6	AcOH	25	12	20	1.1:1	n.d.	n. . e
7	PhCOOH	25	12	23	1.1:1	n.d.	n.d.
8	HCl	0	48	73	$1.2: 1$	95	95
9	HCl	-10	72	64	1.2:1	94	93
10^{f}	HCl	25	12	95	$1.2: 1$	95	94

${ }^{a}$ Reaction condition: trans-cinnamaldehyde (1.0 mmol), cyclopentadiene (5.0 mmol), $\mathrm{CH}_{3} \mathrm{OH}(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1$ $\mathrm{mL})$, catalyst $\mathbf{1 a}(10 \mathrm{~mol} \%)$, acid ($10 \mathrm{~mol} \%$). ${ }^{b}$ Isolated yield. ${ }^{c}$ exo/endo selectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture. ${ }^{d}$ Enantiomeric excess determined by HPLC analysis. ${ }^{e}$ Not determined. ${ }^{f}$ catalyst 1a ($5 \mathrm{~mol} \%$), $\mathrm{HCl}(5 \mathrm{~mol} \%)$, cyclopentadiene (3 equiv.).

Figure S1 The changes in $e e$ of both adducts in Diels-Alder reaction over the time.

Fig. S1 The changes in ee of both adducts in Diels-Alder reaction over the time: trans-cinnamaldehyde (1.0 mmol), cyclopentadiene (3.0 mmol), $5 \% \mathbf{1 a}, 5 \%$ TFA, $\mathrm{CH}_{3} \mathrm{CN}(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, r.t.

Figure S 2 The stability of isolated aldehyde adducts in $\mathrm{CH}_{3} \mathbf{O H}-\mathrm{H}_{2} \mathrm{O}$ system.

Fig. S2 The stability of isolated aldehyde adducts in $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ system: aldehyde products ($1 \mathrm{mmol}, 95 \%$ ee in endoisomers, 94% ee in exo-isomer), $20 \mathrm{~mol} \% \mathbf{1 a}, 100 \mathrm{~mol} \% \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, r.t., 72 h .

Table S4 Enantioselectivity of various substrates in $\mathbf{C H}_{3} \mathbf{C N}-\mathbf{H}_{2} \mathrm{O}$ system.

				$e e^{d}(\%)$	
				exo	endo
1	Ph	92	1.3:1	59	56
2	$m-\mathrm{MeC}_{6} \mathrm{H}_{4}$	93	1.2:1	62	57
3	$o-\mathrm{OMeC}_{6} \mathrm{H}_{4}$	95	1.2:1	34	34
4	$p-\mathrm{OMeC}_{6} \mathrm{H}_{4}$	93	1.1:1	11	9
5	$p-\mathrm{FC}_{6} \mathrm{H}_{4}$	91	1.2:1	40	37
6	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	90	1.1:1	34	32
7	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	91	1:1	46	44
8^{e}	Furyl	82	1.1:1	18	13
9	$n-\mathrm{Pr}$	90	1.2:1	77	58

${ }^{a}$ Reaction condition: α, β-unsaturated aldehyde (1.0 mmol), cyclopentadiene (3.0 mmol), $\mathrm{CH}_{3} \mathrm{CN}$ $(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, catalyst $\mathbf{1 a}(5 \mathrm{~mol} \%), \mathrm{HCl}(5 \mathrm{~mol} \%),{ }^{b}$ Isolated yield. ${ }^{c}$ exo/endo selectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of a crude reaction mixture. ${ }^{d}$ Enantiomeric excess was determined by HPLC analysis. ${ }^{e} 10 \mathrm{~mol} \%$ catalyst, 24 h .

Experimental characterization data for compounds

3-Phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 1).
$188.1 \mathrm{mg}, 95 \%$ yield (colorless oil); 1.3/1.0 exo/endo, exo 95% ee, endo 94% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 70 / 30,0.8 \mathrm{~mL} / \mathrm{min}, 225$ $\mathrm{nm}], \mathrm{t}_{\mathrm{r}}=11.0 \mathrm{~min}, 24.5 \mathrm{~min}, 31.4 \mathrm{~min}, 42.5 \mathrm{~min}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaO}: 221.0929$, found: 233.0937 .
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

3-(m-tolyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 2).
$201.5 \mathrm{mg}, 95 \%$ yield (colorless oil); 1.1/1.0 exo/endo, exo 93% ee, endo 93% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 80 / 20,0.8 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}], \mathrm{t}_{\mathrm{r}}=9.5 \mathrm{~min}, 15.8 \mathrm{~min}, 22.8 \mathrm{~min}, 27.0 \mathrm{~min}$. HRMS (ESI, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}: 235.1092$, found: 235.1093.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two isomers): $\delta 9.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-6.91(\mathrm{~m}, 8 \mathrm{H}), 6.39(\mathrm{dd}, J=5.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=5.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=5.6$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=4.0,1 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two isomers): $\delta 202.4,201.8,143.5,142.5,139.0,138.0,137.5$, $136.5,136.1,133.8,128.6,128.4,128.2,127.9,126.9,126.9,124.7,124.2,60.9,59.5,48.9,48.6$, $47.8,47.3,46.3,46.1,45.8,45.3,21.4$.

3-(2-Methoxyphenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 3).
$218.9 \mathrm{mg}, 96 \%$ yield (colorless oil); 1.2/1.0 exo/endo, exo 96% ee, endo 94% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$. (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 95 / 5,0.6 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$], $\mathrm{t}_{\mathrm{r}}=19.9 \mathrm{~min}, 23.6 \mathrm{~min}, 25.7 \mathrm{~min}, 38.4 \mathrm{~min} . \operatorname{HRMS}(E S I, \mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}_{2}$: 251.1034, found: 251.1043.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

3-(4-methoxyphenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 4).
$216.7 \mathrm{mg}, 95 \%$ yield (colorless oil); 1.1/1.0 exo/endo, exo 95% ee, endo 94% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$. (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 85/15, 20min $\rightarrow 80 / 20,0.8$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}], \mathrm{t}_{\mathrm{r}}=18.6 \mathrm{~min}, 27.7 \mathrm{~min}, 49.9 \mathrm{~min}, 67.1 \mathrm{~min}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}_{2}: 251.1040$, found: 251.1043.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

3-(4-fluorophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 5).

$198.7 \mathrm{mg}, 92 \%$ yield (colorless oil); 1.1/1.0 exo/endo, exo 93% ee, endo 93% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$. (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 85 / 15,0.8 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}], \mathrm{t}_{\mathrm{r}}=9.3 \mathrm{~min}, 16.1 \mathrm{~min}, 25.8 \mathrm{~min}, 44.2 \mathrm{~min} . \operatorname{HRMS}(E S I, \mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FNaO}: 239.0848$, found: 239.0843 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two isomers): $\delta 9.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.17 (m, 3H), 7.09-7.06 (m, 3 H$), 6.99-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}$, $J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.51(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two isomers): δ 202.8, 202.1, 162.3, 162.2, 159.9, 159.8, 138.9, $136.2,136.1,133.5,129.0,129.0,128.5,128.5,115.2,115.0,114.8,114.5,61.0,59.6,48.4,48.4$, 47.5, 47.0, 45.4, 45.0, 45.0, 44.6.

3-(4-Chlorophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 6).

$211.2 \mathrm{mg}, 91 \%$ yield (colorless oil); 1.1/1.0 exo/endo, exo 93% ee, endo $92 \% e e$. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 90 / 10,10 \mathrm{~min}, \rightarrow 80 / 20,0.6$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}], \mathrm{t}_{\mathrm{r}}=15.1 \mathrm{~min}, 21.3 \mathrm{~min}, 36.7 \mathrm{~min}, 51.1 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNaO}: 255.0567$, found: 255.0575 .
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

3-(3-Chlorophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 7).
$215.8 \mathrm{mg}, 93 \%$ yield (colorless oil); 1.0/1.0 exo/endo, exo 92% ee, endo 90% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 99.9 / 0.1,20 \mathrm{~min}, \rightarrow 98 / 2$, $0.6 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}], \mathrm{t}_{\mathrm{r}}=46.3 \mathrm{~min}, 50.1 \mathrm{~min}, 53.9 \mathrm{~min}, 55.9 \mathrm{~min} . \operatorname{HRMS}(E S I, \mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNaO}: 255.0548$, found: 255.0547 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (two isomers): $\delta 9.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.19 (m, 2H), 7.16-7.09 (m, 5H), 7.01-6.99 (m, 1H), $6.39(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}$, $J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J$
$=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) (two isomers): δ 202.2, 201.6, 145.5, 144.5, 138.8, 136.3, 136.0, $134.1,133.7$, 133.6, 129.6, 129.1, 127.7, 127.2, 126.2, 126.1, 125.9, 125.5, $60.859 .3,48.3$, 48.2, 48.1, 47.5, 47.1, 45.4, 45.0

3-(furan-2-yl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 8).

$157.9 \mathrm{mg}, 84 \%$ yield (colorless oil); 1.0/1.0 exo/endo, exo 93% ee, endo 90% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OJ-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$. (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 220$ $\mathrm{nm}], \mathrm{t}_{\mathrm{r}}=11.5 \mathrm{~min}, 23.2 \mathrm{~min}, 25.2 \mathrm{~min}, 29.0 \mathrm{~min} . \operatorname{HRMS}(E S I, \mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{2}: 211.0723$, found: 211.0730 .
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

3-propylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 9).

$152.7 \mathrm{mg}, 92 \%$ yield (colorless oil); 1.2/1.0 exo/endo, exo 93% ee, endo 92% ee. Enantioselectivity was determined by HPLC after reduction with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. [Chiralcel OD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$. (from Daicel Chemical Ind., Ltd.) hexane $/ i-\mathrm{PrOH}, 99.5 / 0.5,0.6 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}], \mathrm{t}_{\mathrm{r}}=28.7 \mathrm{~min}, 29.9 \mathrm{~min}, 32.0 \mathrm{~min}, 33.9 \mathrm{~min}$. This compound was identified by corresponding alcohol due to the instability of aldehyde products. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}$: 167.1423, found: 167.1430.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with previously reported values. ${ }^{[5-12]}$

NMR spectra and HPLC analyses for products

NMR spectra of products

HPLC spectra of products

Chiralcel OJ－H， 225 nm ，hexane $/ i-\mathrm{PrOH}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}$

Signal 1：DAD1 A，Sig $=225,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime「min 1	Tvoe	Width \lceil min \rceil	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heicht「표Nㅣ	Area
1	11.023	VV	0.2625	1968.80566	115.69119	29.0553
2	24.549	VV	0.7113	1996．00671	42.23825	29.4568
3	31.363		1.0047	1405．90088	21.79185	20.7481
4	42.534		1.2930	1405.34131	15.33701	20.7398

\qquad
Area Percent Report

Sorted By	$:$	Sional
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	\＆	Dilution
Uactor	with	ISTDs

Signal 1：DAD1 A，Sig＝225，4 Ref＝360，100

$\underset{\#}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$		$\begin{aligned} & \text { Width } \\ & \text { 「min } 1 \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heioht「mAU1	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.957	V	0.2823	214.68037	11.47553	1.4916
2	24.577	BB	0.7412	6815.63818	137.76959	47.3552
3	30.592	BP	0.8364	222.85541	3.75500	1.5484
4	41.383	BB	1.5953	7139.40479	71.84971	49.6048

Chiralcel OJ－H， 210 nm ，hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}$

Area Percent Report
$\begin{array}{lcc}\text { Sorted By } & : & \text { Siqnal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000 \\ \text { Use Multiplier } & \text { \＆} & \text { Dilution } \\ \text { Factor } & \text { with } & \text { ISTDs }\end{array}$

Signal 1：DADl A，Sig＝210， 4 Ref $=360,100$

Peak	$\begin{aligned} & \text { RetTime } \\ & \lceil\text { min }\rceil \end{aligned}$	Tvoe	Width $\text { 「min }\rceil$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{man}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Height 「maU	Area
1	9.518	VV	0.2710	1.22995 e 4	706.70410	20.8441
2	15.801	VV	0.5665	1.25042 e 4	345.25137	21.1910
3	22.827		0.9905	1.71871 e 4	270.05005	29.1273
4	26.967	VB	1.1874	1.70161 e 4	223.70053	28.8376

\qquad
Area Percent Report

Sorted By	\vdots	Sicnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	\＆	Dilution

Signal 1：DAD1 A，Sig $=210,4$ Ref $=360,100$

Peak	$\begin{aligned} & \text { RetTime } \\ & \lceil\text { min }\rceil \end{aligned}$	Tvoe	Width 「min1		Heicht「maUl	$\underset{\%}{\text { Area }}$
1	9.055	VV	0.2440	351.77438	22.30621	1.8695
2	14.610	VB	0.4636	8968.58398	301.03000	47.6636
3	20.100		0.7306	360.64194	7.75366	1.9166
4	24.374		0.9361	9135.41309	153.10680	48.5502

Chiralcel OJ－H， 210 nm ，hexane $/ i-\mathrm{PrOH}=95 / 5,0.6 \mathrm{~mL} / \mathrm{min}$


```
    Area Percent Report
```

Sorted By	$:$	Sicnal
Multiplier	$:$	1.0000

Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000

Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DAD1 A，Sig＝210，4 Ref＝360，100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \lceil\text { min }\rceil \end{gathered}$	Tvoe	$\begin{aligned} & \text { Width } \\ & \text { } \min 1 \end{aligned}$	Area「mAU＊s \rceil	Height 「mAU］	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.991	VV	0.4283	1.98084 e 4	712.51587	33.2035
2	23.639	VV	0.5397	1.93996 e 4	555.16254	32.5182
3	25.692		0.6173	1.02672 e 4	257.44525	17.2102
4	38.369	VV	1.0236	1.01824 e 4	153.16229	17.0680

Area Percent Report

Sorted By	\vdots	Sicnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	Dilution	Factor with
ISTDs		

Signal 1：DADl A，Sig $=210,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { 「min }\rceil \end{aligned}$	Tvoe	Width $\text { 「min }\rceil$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{min}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Height「maU］	Area 多
1	22.425	MM R	0.4333	731.34241	28.12763	2.0153
2	26.161	MM R	0.6692	2.20911 e 4	550.18604	60.8742
3	28.175	MM R	0.5419	301.87396	9.28492	0.8318
4	36.372	VV	0.8959	1.31654 e 4	219.44533	36.2787

Chiralcel OJ－H， 210 nm ，hexane $/ i-\mathrm{PrOH}=85 / 15,20 \mathrm{~min} \rightarrow 80 / 20,0.8 \mathrm{~mL} / \mathrm{min}$ ．

$===1$
Area Percent Report

Sorted By	$:$	Sional
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier \＆	Dilution	Factor with

Signal l：DADl A，Sig＝228，4 Ref＝360，100

Peak \#	RetTime 「min1	Tvoe	Width 「min1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \boldsymbol{S}\right\rceil \end{gathered}$	Height 「mad］	Area
1	18.634	VV	0.3866	9953.17090	399.63657	23.0775
2	27.716	VV	0.5811	1.16550 e 4	313.95361	27.0234
3	49.995	BB	1.1162	9889.44824	139.98567	22.9298
4	67.089	VB	1.8879	1.16317 e 4	85.24593	26.9693

$===1$
Area Percent Report

Sorted By	\vdots	Simal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier $\&$	Dilution	Factor with
ISTDs		

Signal 1：DAD1 A，Sig＝228，4 Ref＝360，100

$\underset{\#}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \text { 「min }\rceil \end{aligned}$	Tvoe	Width 「min 1	Area $\left\lceil\mathrm{mAU}{ }^{\boldsymbol{s}} \mathrm{s}\right\rceil$	Heicht 「mind	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.402	MM R	0.4224	256.65192	10.12667	1.2846
2	28.468	MM R	0.5111	306.85623	10.00722	1.5359
3	44.949	MM R	0.8749	9089.86621	173.16736	45.4980
4	58.206	VV	1.5232	1.03252 e 4	102．50018	51.6814

Chiralcel OJ－H， 210 nm ，hexane $/ i-\mathrm{PrOH}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}$


```
Area Percent Report
```

Sorted By	\vdots	Sional
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000

$\begin{array}{lll}\text { Dilution } & \vdots & 1.0000\end{array}$
Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DAD1 A，Sig $=210,4$ Ref $=360,100$

$\underset{\#}{\text { Peak }}$	RetTime 「min1	Tvoe	Width 「min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heicht 「maU］	Area
1	9.285	VV	0.1906	8183.82080	669.33771	24.7882
2	16.094		0.3942	8334．52051	330.55728	25.2446
3	25.845	BB	0.6977	8136.25635	183.34978	24.6441
4	44.221	VV	1.4420	8360.44531	91.15469	25.3231

$===1$
Area Percent Report

Sorted By	\vdots	Siqnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	Dilution	Factor

Signal 1：DADl A，Sig＝210， 4 Ref $=360,100$

$\underset{\#}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width $\lceil\min 7$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \leqslant\right\rceil \end{gathered}$	Height 「mAU1	$\begin{gathered} \text { Area } \\ \frac{2}{8} \end{gathered}$
1	9.108	MM R	0.1913	188.97432	16.45993	1.5491
2	15.526	MM R	0.3932	255.14880	10.81443	2.0915
3	24.710	MM R	0.6816	5314.94873	129.96785	43.5675
4	41.536	MM R	1.3550	6440.27539	79.21528	52.7920

Chiralcel OJ－H， 210 nm ，hexane $/ i-\mathrm{PrOH}=90 / 10,10 \mathrm{~min} \rightarrow 80 / 20,0.6 \mathrm{~mL} / \mathrm{min}$ ．

$===1$
Area Percent Report

Sorted By	$:$	Siqnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	\＆	Dilution
Factor	with	ISTDs

Signal 1：DAD1 A，Sig＝210，4 Ref＝360，100

$\underset{\sharp}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min 1	$\begin{gathered} \text { Area } \\ \left\lceil m A U^{*} s\right\rceil \end{gathered}$	Height 「mAU 1	Area
1	15.109	MM R	0.3096	6140.45117	330.60858	26.5849
2	21.277	MM R	0.3656	5582.66064	254．47655	24.1700
3	36.667	MM R	0.6422	5989.88770	155．44403	25.9330
4	51.080	MM R	1.1178	5384．50879	80.28416	23.3121

\qquad
Area Percent Report

Sorted By	$:$	Sional
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	a	Dilution
Factor	with	ISTD

Signal 1：DAD1 A，Sig＝210，4 Ref $=360,100$

Peak	$\begin{aligned} & \text { RetTime } \\ & \lceil\text { min }\rceil \end{aligned}$	Tvoe	$\begin{aligned} & \text { Width } \\ & \text { 「min } \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heioht 「mAU］	$\underset{\%}{\text { Area }}$
1	14.379	VV	0.2798	376.92023	20.76600	1.6347
2	20.129	MM R	0.3552	530.77844	24.90523	2.3020
3	34.482	MM R	0.5667	9638.06348	283.47128	41.8008
4	46.674	MM R	0.9564	1.25113 e 4	218.03403	54.2624

Chiralcel OJ－H， 210 nm ，hexane $/ i-\mathrm{PrOH}=99.9 / 0.1,20 \mathrm{~min} \rightarrow 98 / 2,0.6 \mathrm{~mL} / \mathrm{min}$ ．


```
Multiplier :
Multiplier
Dilution ： 1.0000
Use Multiplier \＆Dilution Factor with ISTDs
```

Signal 1：DADl A，Sig＝210，4 Ref＝360，100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime「min1	Tvoe	$\begin{aligned} & \text { Width } \\ & \lceil\min 1 \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Height 「mad］	Area
1	46.267	MM R	0.6309	8963.94336	236.82074	25.4444
2	50.147	MM R	0.7065	8758.95313	206.61642	24.8626
3	53.865	MM R	0.8259	8818.11426	177.96025	25.0305
4	55.912	MM R	0.8458	8688.49121	171.21066	24.6625

\qquad Area Percent Report

Sorted By	$:$	Siqnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000

Dilution
Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DAD1 A，Sig＝210，4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime「min 1	Tvoe	Width 「min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \boldsymbol{S}\right\rceil \end{gathered}$	Height 「mad］	Area
1	41.729	MM R	0.4855	238.03937	8．47672e－2	1.7144
2	45.463	MM R	0.6255	5970.71387	159.10014	43.0013
3	48.843	MM R	0.7361	7372.66699	166.93918	53.0982
4	50.756	MM R	0.6871	303.54443	7.36335	2.1861

Chiralcel OD-H, 210 nm , hexane $/ i-\mathrm{PrOH}=99.5 / 0.5,0.6 \mathrm{~mL} / \mathrm{min}$.

Sorted By	$:$	Siqnal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=210,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	$\begin{aligned} & \text { Width } \\ & \text { 「min } 1 \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAN}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heicht「mAU]	Area
1	28.655	MM R	0.5343	8225.18262	256.58316	24.1793
2	29.926	MM R	0.5821	7791.08008	223.05606	22.9031
3	32.017	MM R	0.6422	9095.52539	236.06430	26.7378
4	33.947	MM R	0.6647	8905.73047	223.31462	26.1798

Signal 1: DAD1 A, Sig $=210,4$ Ref $=360,100$

Chiralcel OJ-H, 220 nm , hexane $/ i-\mathrm{PrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}$

Signal 1: DAD1 A, Sig=220,4 Ref=360,100

$\underset{\substack{\text { Peak } \\ \#}}{ }$	$\begin{gathered} \text { RetTime } \\ \lceil\text { minin } \end{gathered}$	Tvoe	Width「min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Height「mAU]	Area
1	11.540	W	0.2162	8921.57324	649.54095	24.1866
2	23.242	WV	0.5227	9497.28711	286.53726	25.7473
3	25.240	vB	0.5769	8957.12598	234.90878	24.2830
4	28.966	BV	0.7132	9510.47949	199.12978	25.7831

\qquad
Area Percent Report

Sorted By	$:$	Sional
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Dilution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220, 4 Ref $=360,100$

HPLC spectra for Table 2 in manuscript

Table 2，entry 1：

Peak \#	RetTime「min1	Tvoe	Width $\lceil\min \rceil$	$\begin{gathered} \text { Area } \\ \lceil\text { mAU*S }\rceil \end{gathered}$	Heicht「mAU］	Area
1	10.063	WV	0.2222	5162.26758	362.43411	22.0111
2	20.388	VV	0.5418	5223.04736	144.48164	22.2703
3	25.475	VB	0.7153	6511.12402	136.79135	27.7624
4	32.723	VV	1.0680	6556.56396	98.06458	27.9562

Table 2，entry 2：

Signal 1：DAD1 A，Sig＝225，4 Ref＝360，100

ak	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \leqslant 1\right. \end{gathered}$	Heicht「mAU1	$\begin{gathered} \text { Area } \\ \frac{\%}{\delta} \end{gathered}$
1	10.558	VV	0.2506	1962.4289	122.69833	22.
2	22.618	MM R	0.6742	1752.06702	43.31303	20.1271
3	28.892	WV	0.8815	2552.80713	43.95701	29.3257
4	38.506	WV	1.0006	2437.71973	29.73178	28.0036

Table 2, entry 3:

Table 2, entry 4:

\qquad

Sorted By	$:$	Siqnal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Dilution : $\quad 1.0000$
Use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min7	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heicht「mad]	$\begin{gathered} \text { Area } \\ \frac{2}{8} \end{gathered}$
1	10.108	MM R	0.2392	483.607	33.69835	5.5173
2	20.299	MM R	0.5269	402.28970	12.72617	4.5896
3	25.888	BV	0.7370	4220.09766	87.76259	48.1457
4	33.629	VV	0.9740	3659.27051	57.22977	41.7474

Table 2，entry 5：

Sorted By	\vdots	Simal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	Dilution	Factor with

Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DADl A，Sig＝225，4 Ref＝360，100

$\underset{\#}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heioht 「madl	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.445	WV	0.2374	5094． 49902	335.07294	30.1132
2	21.753	BB	0.6162	4081.69849	100.00665	24.1266
3	27.142		0.8016	4134.53857	77.60605	24．4389
4	36.138	BV	1.1429	3607.09668	48.99744	21.3213

Table 2，entry 6：

Sorted By	$:$	Siqnal
Multiplier	\vdots	1.0000
Dilution	$:$	1.0000

Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DAD1 A，Sig＝225，4 Ref＝360，100

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	RetTime Tvoe「min］	Width 「min7	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \leq\right\rceil \end{gathered}$	Heicht「midul	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
1	10.610 WV	0.2567	6216.33398	376.27350	33.
2	22.913 VV	0.6635	2701.79761	63.10043	14．5859
3	29.411 VB	0.9136	6188.60596	104.09145	33.4097
4	38.564 BP	1.2104	3416.62183	44.76526	18.4449

Table 2, entry 7:

$===================$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	Dilution Factor	

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\underset{\#}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min]	$\begin{gathered} \text { Area } \\ \text { } \left.\begin{array}{c} \text { mAU** } \end{array}\right] \end{gathered}$	Heicht「mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\%} \end{gathered}$
1	10.298	VV	0.2299	4332.47314	290.60303	26.2605
2	21.195		0.5736	4312.05127	114.95724	26.1368
3	26.561		0.7553	3913.38818	78.81629	23.7203
4	34.653	VB	1.0503	3940.11768	57.87358	23.8824

HPLC spectra for Figure1 in manuscript

Fig. 1 Different reversion reactivity between (2 S)-adducts and ($2 R$)-adducts in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ system: $(2 S)$-adducts (95% ee in endo-isomers) and the ($2 R$)-adducts (95% ee in endo-isomers), $20 \mathrm{~mol} \% \mathbf{1 a}, 50 \mathrm{~mol} \% \mathrm{TFA}, \mathrm{CH}_{3} \mathrm{CN}(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL}), 40$ ${ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Sorted By	$:$	Sional
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier	Dilution	Factor
with	ISTDs	

Signal 1：DAD1 A，Sig $=225,4$ Ref $=360,100$

Peak	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	$\begin{aligned} & \text { Width } \\ & \lceil\min \rceil \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \leqslant 1\right. \end{gathered}$	Heicht「madl	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	10.238	BV	0.2529	1.24207 e 4	767.14288	49.5628
2	20.470	PB	0.5190	305.03113	9.19471	1.2172
3	26.465	BB	0.8732	1．18672e4	213.24927	47.3541
4	34.465	VP	0.9104	467.61353	7.08101	1.8659

\qquad
Area Percent Report

Sorted By	$:$	Sicmal
Multiplier	$:$	1.0000

Multiplier
：$\quad 1.0000$

Signal 1：DAD1 A，Sig＝225，4 Ref $=360,100$

eak \#	RetTime \lceil min 1		Width「min］	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heicht「midul	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.169	BV	0.3168	2.27853 e 4	1182.68140	43.9224
2	20.722	BB	0.5243	890.17065	26.47439	1.7159
3	25.886	BP	1.3901	2．68358e4	330.92719	51.7303
4	34.570	BP	1.0873	1365.08118	19.43820	2.6314

$\mathrm{T}=\mathbf{2 4} \mathbf{h}$, ee values in $\mathbf{2 R}$-endo-isomer: $\mathbf{9 0 \%}$

\qquad
Area Percent Report
$\begin{array}{lll}\text { Sorted By } & : & \text { Sicmal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Jse Multiplier \& Dilution $\quad 1.0000$

Signal 1: DAD1 A, Sig=225,4 Ref $=360,100$

eak \#	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$		Width 「min1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heioht「mAU1	$\begin{gathered} \text { Area } \\ \frac{\%}{*} \end{gathered}$
1	10.297	BB	0.2319	3252.47974	220.79329	43.8346
2	20.908	BP	0.4988	170.93530	4.90281	2.3037
3	26.994		0.7940	3732.11963	72.33378	50.2988
4	35.128		0.8292	264.36237	4.09474	3.5629

$\mathrm{T}=48 \mathrm{~h}$, ee values in $2 R$-endo-isomer $: \mathbf{9 0 \%}$

Sorted By	$:$	Sional
Multiplier	$:$	1.0000

Multiplier : $\quad 1.0000$
Dilution Use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig=225,4 Ref $=360,100$

Peak \#	RetTime $\lceil\min 1$	Tvoe	Width \lceil min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heicht「mAU]	Area
1	10.230	BV	0.2775	1.60925 e4	931.71936	50.1626
2	21.077	BP	0.5509	913.76117	26.20192	2.8483
3	26.862	BB	0.9773	1.39495 e 4	230.76067	43.4825
4	35.162	BP	1.0470	1124.94214	16.59127	3.5066

$\mathrm{T}=0 \mathrm{~h}$ ，ee values in 2 －endo－isomer ：95\％

$T=6 \mathrm{~h}$ ，ee values in $2 S$－endo－isomer ： 91%

$\begin{array}{lll}\text { Sorted By } & : & \text { Sicnal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & : & 1.0000\end{array}$
Dilution 1.0000

Signal 1：DAD1 A，Sig $=225,4$ Ref $=360,100$

Peak	RetTime Tvoe「min1	Width 「min 1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heicht「mAU 1	Area
1	10.311 VB	0.2641	507.50729	28.45744	2.0261
2	21.876 BP	0.6369	1.02009 e 4	241． 46463	40.7245
3	27.056 BP	0.7597	794.83325	15.99607	3.1732
4	35.258 BP	1.8231	1.35453 e 4	128.77971	54.0762

$T=12 \mathrm{~h}$,ee values in 2 S-endo-isomer : 88\%


```
=========================================================================== Aren
```

sorted By : simal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min]	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU} \mathrm{~J}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heioht 「mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\%} \end{gathered}$
1	10.483	BB	0.2560	227.04349	13.51404	3.1623
2	22.022	BP	0.6067	3694.70728	93.16764	51.4599
3	27.422	BB	0.7632	230.55415	4.70892	3.2112
4	36.614	BP	1.1255	3027.47534	41.57715	42.1667

$\mathrm{T}=\mathbf{2 4} \mathrm{h}$, ee values in $2 S$-endo-isomer $: \mathbf{8 3} \%$

$\mathrm{T}=48 \mathrm{~h}$ ，ee values in $2 S$－endo－isomer ：73\％

Sorted By	：	Simal		
Multiplier	：	1.0000		
Dilution	：	1.0000		
Use Multiplier \＆Dilution Factor with ISTDs				
Signal 1：DAD1 A，Sig $=225,4$ Ref $=360,100$				
Peak RetTime Tvoe \＃「min1	Width 「min〕	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Height「ImAU 1	Area
$1 \quad 10.239 \mathrm{MM} \mathrm{R}$	0.2374	897.29095	62.98620	6.4569
2 21．299 BP	0.6134	5859.77637	144．42162	42.1667
$3 \quad 26.588 \mathrm{BP}$	0.7450	894.77893	18.34726	6.4388
435.512 BP	1.2574	6244.83594	80.11901	44.9376

HPLC spectra for Figure2 in manuscript

Fig. 2 The stability of isolated aldehyde adducts in $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ system: aldehyde products ($1 \mathrm{mmol}, 94 \%$ ee in $2 S$-endoisomers, 95% ee in $2 S$-exo-isomers), $20 \mathrm{~mol} \% \mathbf{1 a}, 100 \mathrm{~mol} \% \mathrm{TFA}, \mathrm{CH}_{3} \mathrm{CN}(1.9 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, r.t..
Nawnex

Sorted By	$:$	Sional
Multiplier	$:$	1.0000

Multiplier : 1.0000
Dilution

Peak	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width 「min]	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heicht「mad]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.468	MM R	0.2589	323.99570	20.86004	1.6193
2	22.420	BB	0.6494	9476.46973	215.33949	47.3630
3	27.521		0.7965	424.82736	8.47954	2.1233
4	36.594	BP	1.5509	9782.88770	105.78684	48.8944

$\mathrm{T}=24 \mathrm{~h}$, ee values in endo-isomer ($\mathbf{9 0 \%}$) and exo-isomer (93%)

$\begin{array}{lll}\text { Sorted By } & : & \text { Siqnal } \\ \text { Multiplier } & : & 1.0000 \\ \text { Dilution } & : & 1.0000\end{array}$
Use Multiplier \＆Dilution Factor with ISTDs

Signal l：DAD1 A，Sig＝225，4 Ref $=360,100$

$\begin{gathered} \text { eak } \\ \text { \# } \end{gathered}$	RetTime Tvoe $\lceil\min 1$	Width 「min1		Heicht「midul	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.139 VB	0.3726	2246.44702	87.19568	4.3398
2	20.500 BB	0.7392	2.56956 e 4	564.35150	49.6394
3	25.013 BB	0.6759	730.62921	16.78360	1.4115
，	31.524 BP	1.5542	30918e4	195．47653	44.6094

$T=48 \mathrm{~h}$ ，ee values in endo－isomer（ 80% ）and exo－isomer（ 93% ）

Sorted By	$:$	Sicnal
Multiplier	\vdots	1.0000
Dilution	$:$	1.0000

Dilution ： 1.0000
Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：DAD1 A，Sig $=225,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$		$\begin{aligned} & \text { Width } \\ & \text { 「min } 1 \end{aligned}$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU} \mathrm{~J}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heioht「mAU1	Area
1	10.661	MM R	0.5892	681.7271	19.284	5.7350
2	23.216	BP	0.7190	6193.94971	129.28271	52.1067
3	28.975	BP	0.7432	187.75990	3.58406	1.5795
4	39.918		1.3925	4823.62451	54.71772	40.5788

Sorted By	$:$	Signal
Multiplier	$:$	1.0000

Multiplier : $\quad 1.0000$
Dilution

Signal l: DADl A, Sig $=225,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvoe	Width $\lceil\min 7$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{\star} \mathrm{S}\right\rceil \end{gathered}$	Heicht 「mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.527	VB	0.4916	1083.85425	35.55757	6.4483
2	22.122	BB	0.6467	7660.56445	174.99257	45.5761
3	27.420	BB	0.7525	327.71350	6.49726	1.9497
4	37.148	BP	1.4734	7736.14648	86.00327	46.0258

HPLC spectra for Figure S1 in ESI

$\mathrm{T}=0 \mathrm{~h}$, ee values in endo-isomer ($\mathbf{9 5 \%}$) and exo-isomer (94%)

T=12 h , ee values in endo-isomer ($\mathbf{9 5 \%}$) and exo-isomer ($\mathbf{9 4 \%}$)

T=24 h,ee values in endo-isomer (93\%) and exo-isomer (93\%)

T=48 h,ee values in endo-isomer ($\mathbf{9 3 \%}$) and exo-isomer ($\mathbf{9 2 \%}$)

Sorted By
Multiplier
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A , Sig $=225,4$ Ref $=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \lceil\min \rceil \end{aligned}$	Tvo	Width 「min1	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mAU}^{*} \mathrm{~S}\right\rceil \end{gathered}$	Heioht「midul	$\underset{\%}{\text { Area }}$
1	10.712		0.2698	400.14087	22.68261	1.7611
2	23.507		0.7116	1.07883 e 4	229.83121	47.4817
3	29.104		0.8117	459.72009	8.76844	2.0233
4	38.342		1.6673	1.10728 e 4	111.82038	48.7338

\qquad

The molecular models and the calculation results:

化合物	a 键长 (\AA)	b 键长 (\AA)	平均键长 (\AA)
A	1.60215	1.59614	1.599145
B	1.60458	1.59671	1.600645
C	1.58403	1.58876	1.586395
D	1.58886	1.58371	1.586285

References：

1．K．A．Ahrendt，C．J．Borths，and D．W．C．MacMillan，J．Am．Chem．Soc．，2000，122， 4243.
2．X．R．Liang，S．M．Li and W．K．Su，Tetrahedron Lett．，2012，53， 289.
3．X．R．Liang，J．Y．Fan，F．Shi and W．K．Su，Tetrahedron Lett．，2010，51， 2505.
4．X．R．Liang，N．Li，X．L．Chen and W．K．Su，RSC Adv．，2014，4， 44039.
5．K．A．Ahrendt，C．J．Borths and D．W．C．MacMillan，J．Am．Chem．Soc．，2000，122， 4243.
6．K．H．Kim，S．Lee，D．W．Lee，D．H．Ko and D．C．Ha，Tetrahedron Lett．，2005，46， 5991.
7．A．Sakakura，K．Suzuki，K．Nakano and K．Ishihara，Org．Lett．，2006，8， 2229.
8．T．Kano，Y．Tanaka and K．Maruoka，Org．Lett．，2006，8， 2687.
9．H．Gotoh and Y．Hayashi，Org．Lett．，2007，9， 2859.
10．C．Biaggi，M．Benaglia，S．Rossi，S．Proto and R．Annunziata，Tetrahedron Lett．，2007，48， 8521.
11．Y．Hayashi，S．Samanta，H．Gotoh and H．Ishikawa，Angew．Chem．，Int．Ed．，2008，47， 6634.
12．H．He，B．J．Pei，H．H．Chou，T．Tian，W．H．Chan and A．W．M．Lee，Org．Lett．，2008，10， 2421.

