Electronic Supplementary Information (ESI)

Fabrication of conductive oxidase–entrapping nanocomposite in mesoporous ceria–carbon for efficient electrochemical biosensor

Eunae Kang,^a Jinwoo Lee, ^b Byoung Yeon Won, ^b Seongbeen Kim, ^a Sujeong Shin, ^b Moon Il Kim *,^c and Hyun Gyu Park*,^b

^a Department of Chemical Engineering, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea.

^b Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

^cDepartment of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeonggu, Seongnam, Gyeonggi 461-701, Republic of Korea.

*To whom correspondence should be addressed. E-mail: <u>moonil@gachon.ac.kr;</u> <u>hgpark@kaist.ac.kr</u>

Figure S1. (a) TEM image and (b) SAXS trace of Meso-CeO₂ (40%)/C.

Figure S2. Nitrogen adsorption/desorption isotherms of the nanocomposite entrapping GOx in Meso-CeO₂ (60%)/C.

Figure S3. Zeta potential measurements at pH 7. A: Meso-CeO₂ (60%)/C, B: Meso-CeO₂ (60%)/C after the immobilization of GOx, C: Meso-CeO₂ (20%)/C, D: Meso-CeO₂ (20%)/C after the immobilization of GOx

Figure S4. High resolution TEM images of (a) Meso-CeO₂ (20%)/C and (b) Meso-CeO₂

(60%)/C. d_{111} spacing of cubic CeO₂ nanocrystals is shown in the image.

Figure S5. Cyclic voltammetry to determine the effect of H_2O_2 on the current signal. MSU-F-C without CeO₂ was employed in this experiment.

Figure S6. Cyclic voltammetry to determine the effect of glucose level on the current signal. a) nanocomposite after the immobilization of GOx in Meso-CeO₂ (60%)/C, b) nanocomposite after the immobilization of GOx in Meso-CeO₂ (20%)/C.

Figure S7. Current responses towards various potential interfering substances in serum. The concentrations of glucose, acetaminophen (AP), uric acid (UA), ascorbic acid (AA), and dopamine (DOP) were 1 mM, 100 μ M, 20 μ M, 50 μ M, and 3 nM, respectively.

Biosensor design	LOD (µM)	Linear range (mM)	Sensitivity (µA/mM)	Shelf life	Detection condition	Ref
H ₂ O ₂ detection						
CeO ₂	0.098	0.0022-0.32	240	NR	Buffer	17
CeO ₂ /platinum/gra phene	0.5	NR	11.1	NR	Buffer	18
CeO ₂	1	0.001-0.05	0.48	NR	Buffer	S1
CeO ₂	0.6	NR	21.13	NR	Buffer	S2
CeO ₂ /Au	7	0.05-2.5	3.0	NR	Buffer	S3
Meso-CeO ₂ /C	~10	0.1-5	0.198	NR	Buffer	This study
Glucose detection						
CeO ₂ /platinum	NR	1.39-8.33	0.5	10 weeks	Buffer	16
CeO ₂	34.1	0.2-12.3	1.65	NR	Buffer	17
CeO ₂ /platinum/gra phene	1.3	NR	66.2	NR	Buffer	18
CeO ₂	12	2.78-22.2	0.05	12 weeks	Buffer	S4
Meso-CeO ₂ /C	100	0.25-5	0.05	2 months	Buffer & clinical serum	This study

Table S1. Comparison of the performances of the various CeO_2 -based electrochemicalbiosensors for H_2O_2 and glucose sensing with the present system.

NR = not reported.

References

S1. A. Mehta, S. Patel, H. Bang, H. J. Cho and S. Seal, Sens. Actuat. A. Chem., 2007, 134, 146-151.

- S2. S. K. Ujjain, A. Das, G. Srivastava, P. Ahuja, M. Roy, A. Arya, K. Bhargava, N. Sethy,
- S. K. Singh, R. K. Sharma and M. Das, *Biointerphases*, 2014, 9, 031011.
- S3. W. Zhang, G. Xie, S. Li, L. Lu and B. Liu, Appl. Surf. Sci., 2012, 258, 8222-8227.

S4. A. A. Ansari, P. R. Solanki and B. D. Malhotra, *Appl. Phys. Lett.*, 2008, 92, 263901-263903.