In situ SiO₂ embedded into the graphene oxide to generate 3D hierarchical porous graphene laminates for high performance lithium-sulfur batteries

Wangliang Wu,^{ab} Chunying Wan,^{ab} Chuxin Wu,^{ab} and Lunhui Guan^{ab*}

a Key Laboratory of Design and Assembly of Functional Nanostructures, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China Fax: +86-591-63173550; Tel: +86-591-63173550; E-mail: guanlh@fjirsm.ac.cn

b Fujian Key Laboratory of Nanomertials, Fuzhou, Fujian 350002, China

1. Experimental section

1.1. Materials synthesis

All chemicals in experiment were of analytical grade and used as received.

Synthesis of 3D porous graphene laminates (GLs): Typically, a 50 ml GO (0.5 mg ml⁻¹) aqueous solution was modified with poly(diallyldimethyl ammonium chloride) (PDDA) or polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) (0.4 mg ml⁻¹ in H₂O) under ultrasonication for 30 minutes. The samples were respectively labelled as PDDA-GO and PSS-GO. Secondly, 0.5 ml tetraethylorthosilicate (TEOS) (or NH₃ H₂O) was added into these modified GO aqueous solution under stirring for 10 minutes, respectively. Thirdly, PDDA-modified negatively charged GO solution was added dropwise into the PSS-modified negatively charged GO under vigorous stirring for 6 h. Then centrifuged and washed repeatedly with DI water and ethanol and dried at 60 °C for 12 h. Finally, the products were carbonized by heating sequentially in a tubular furnace at 800 °C for 2 h under Ar atmosphere; Silica was removed by immersing the composite in 10 wt % hydrofluoric acid solution under stirring for 24 h at room temperature.

Preparation of the C-S composite: The C-S composite was prepared via a facile melt-diffusion strategy. GO used here were produced by the modified Hummers method, as our previous report.¹ rGO was attained by heating at a heating rate of 10 K min⁻¹ in a tubular furnace at 800 °C for 2 h under Ar atmosphere. Typically, carbon material (GLs or rGO) and sulfur with weight ratios of 1:4 were dissolved in 5 ml CS₂ to form a homogeneous solution under ultrasonic radiation. Subsequently, CS₂ was allowed to completely evaporate from the solution under magnetic stir to obtain the C-S composite. The final C-S product was placed in a crucible, then heated to 155 °C with a slow heating rate of 0.5 °C min⁻¹ and kept at that temperature for 12 h in an argon environment. The products were denoted as GLs-S or rGO-S.

1.2. Materials Characterization

The structure and morphology of composites were characterized by X-ray diffraction (XRD, RIGAKU SCXmini), scanning electron microscope (SEM, JSM-6700F), and transmission electron microscope (TEM, Tecnai G2 F20). Thermal gravimetric analysis (TGA, NETZSCH STA449 C) tests were measured from 30 to 600 $^{\circ}$ C at a heating rate of 10 K min⁻¹ in a N₂ environment to evaluate the weight content of sulfur in the composites. The nitrogen adsorption/desorption isotherms and the pore size distribution using the density functional theory (DFT) calculation were performed by an ASAP-2020 surface area analyzer.

1.3. Electrochemical measurements

The electrochemical tests were performed via CR2025 coin-type test cells which were fabricated in an argon-filled glove box using lithium metal as the counter electrode and a Celgard 2300 membrane. The cathode slurry was prepared by mixing 80 wt% C-S composite, 10 wt% conducting carbon (ketjen black, KB), and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-prrolidone (NMP) solvent dispersant. Positive electrodes were produced by pasting the slurry on Ni foam with an average sulfur loading of 1.1~1.3 mg cm⁻², then drying at 60 °C for 12 h. The electrolyte solution was 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in a mixed solvent of 1,2-dimethoxy ethane (DME) and 1,3-dioxolane (DOL) (a volume ratio of 1 : 1) with 0.25 M lithium nitrate addictive (LiNO3). The charge-discharge performance of the cells was tested with LAND CT-2001A instrument. The cut-off potentials were 1.9 and 2.7 V at room temperature. Cyclic voltammetry (CV) tests were performed on a Zennium Electrochemical Workstation. The cut-off potentials were 1.9 and 2.7 V at room temperature.

Fig. S1. Scanning transmission electron microscopy (STEM) image and the corresponding element mapping images of carbon and sulfur of the GLs-S composite.

Fig. S2. CV curves of the GLs-S electrode at a scan rate of 0.1 mv s⁻¹.

samples	BET	Pore Volume
GLs	771 m ² g ⁻¹	1.53 cm ³ g ⁻¹
rGO	$252 \text{ m}^2 \text{g}^{-1}$	1.12 cm ³ g ⁻¹
GLs-S	29 m ² g ⁻¹	0.1 cm ³ g ⁻¹
rGO-S	29 m ² g ⁻¹	0.1 cm ³ g ⁻¹

Table 1 Textural characteristic of samples

1. C. Wan, W. Wu, C. Wu, J. Xu and L. Guan, *RSC Adv.*, 2015, **5**, 5102-5106.