Supporting Information for

Triphenylphosphine-assisted highly sensitive fluorescent chemosensor

for ratoimetric detection of palladium in solution and living cells

Hailiang Nie, Junming Geng, Jing Jing, Yamin Li, Wen Yang* and Xiaoling Zhang*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 Zhongguancun Road, Beijing 100081, P. R. China E-mail: wenyang@bit.edu.cn; zhangxl@bit.edu.cn;

Fax: +86-10-88875298; Tel: +86-10-88875298.

Contents

- 1. Comparison of the analytical performances of our two chemosensors
- 2. Analysis of the reaction mechanism by HPLC method
- 3. Time-dependent fluorescence intensity ratio changes of chemosensor 1 during reacting with Pd²⁺
- 4. Calculation for detection limit
- 5. Cytotoxicity assays
- 6. NMR and ESI-MS spectra of chemosensor 1 and its Pd⁰-catalyzed deallylation product

1. Comparison of the analytical performance of our two chemosensors

	fluorescence	linear range	Detection Limit	Pd ²⁺ concentration to be
	imaging	(µM)	(nM)	incubated with cells (μM)
previous chemosensor	ratiometric	0~7	70	40
chemosensor 1	ratiometric	0.02~0.25	1	0.3

Table 1 The analytical performance of our two chemosensors

2. Analysis of the reaction mechanism by HPLC method

Figure S1. Monitoring the reaction processes by HPLC. (A) The spectral of chemosensor 1-Pd(PPh₃)₄ reaction system in THF; (B) The spectral of chemosensor 1-Pd(PPh₃)₄-NaBH₄ reaction system in THF; (C) The spectral of chemosensor 1-PPh₃-PdCl₂ reaction system in PBS solution (pH=7.4). All reaction were performed for 12h and then analyzed by HPLC at 254 nm absorption wavelength. The samples were analyzed by reverse-phase HPLC with a linear gradient [C18-ST: starting eluent 50% CH₃CN/0.1% TFA aq; final eluent 90% CH₃CN/0.1% TFA aq.; gradient duration 10 min; flow rate = 1 mL/min].

3. Time-dependent fluorescence intensity ratio changes of chemosensor 1 during reacting with Pd²⁺

Figure S2. Fluorescence intensity ratios (F_{560nm}/F_{460nm}) in PBS buffer (10 mM, pH 7.4) with reaction time of 5, 10, 15, 20, 25, 30, 40, 50, 60, 90, 120 min. The measurements were performed after reacting chemosensor **1** (5 μ M) and PPh₃ (4 μ M) with Pd²⁺ (0.5 μ M) at room temperature. $\lambda_{ex} = 410$ nm.

4. Calculation for detection limit

The detection limit was calculated based on the fluorescence titration. In the absence of Pd^{2+} , the fluorescence emission of chemosensor **1** was measured ten times and the standard deviation of blank measurement was obtained. To gain the slope, the logarithm of the fluorescence intensity ratio at two emission peaks, log (F_{560}/F_{460}), was plotted versus Pd^{2+} concentration. The detection limit was calculated according to the following equation:

Detection limit = $3\sigma/k$

Where σ is the standard deviation of blank measurements and k is the slope of log ($F_{560 \text{ nm}}$ / $F_{460 \text{nm}}$) versus Pd²⁺ concentration

5. Cytotoxicity assays

RAW264.7 macrophage cells were cultured in culture media (DMEM) in an atmosphere of 5% CO₂ and 95% air at 37 °C. The cells were seeded into 96-well plates at a density of 5×10^3 cells per well in culture media, then 5, 10 and 20 µM chemosensor 1 (containing 4 µM PPh₃) were added respectively. Next, the cells were incubated at 37 °C in an atmosphere of 5% CO₂ and 95% air for 24 h. Finally, 10 µL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 5 mg/mL) was added and were cultured for another 4 h, respectively.

Fig. S3 Cytotoxicity assays of chemosensor 1 (containing 4 µM PPh₃) at different concentrations for RAW264.7 macrophage cells

6. NMR and ESI-MS spectra of chemosensor 1 and its Pd⁰-catalyzed deallylation

product

Figure S4. ¹H-NMR spectrum of chemosensor 1

Figure S5. ¹³C-NMR spectrum of chemosensor 1

Figure S6. ESI-MS spectrum of chemosensor 1

Figure S5. ¹H-NMR spectrum of the Pd⁰-catalyzed deallylation product

Figure S7. ¹C-NMR spectrum of the Pd⁰-catalyzed deallylation product

Figure S8. ESI-MS spectrum of the Pd⁰-catalyzed deallylation product