Supporting Information

Co-assembly of two types of complementary dendritic units into amphiphilic supramolecular complexes capable of hosting guest molecules

Yi Liu,^a Ting Xiao,^b Li Xu,^a Xun-Yong Liu*^a

a School of Chemistry and Materials Science, Ludong University, 264025 Yantai,

Shandong Province, People's Republic of China

b Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, EastChina Normal University, 200062 Shanghai, People's Republic of China

Corresponding author, Tel.: +86-535-6672176; fax: +86-22-6672176

E-mail: xunyongliu@126.com (Xunyong Liu)

	Aqueous phase		Chloroform phase	
	ϵ (L/mol/cm)	$\lambda_{max}(nm)$	ε (L/mol/cm)	$\lambda_{max}(nm)$
МО	2.28×10 ⁴	465	2.56×10 ⁴	420
EY	3.97×10 ⁴	512	4.10×10 ⁴	536
FS	5.33×10 ⁴	487	5.57×10 ⁴	502

Table S1 Mole extinction coefficients (ϵ) at λ_{max} of three dyes in water and chloroform

Fig. S1 Transmission FT-IR spectra of HPEI, octoic acid (C8), HPEI+C8-0.54 complex, D1-C8, HPEI+D1-C8-0.54 complex, the 0.54 is the ratio of [COOH]/[N].

Fig. S2 ¹H NMR spectra of HPEI, octoic acid (C8), HPEI+C8-0.54 complex, D1-C8, HPEI+D1-C8-0.54 complex, the 0.54 is the ratio of [COOH]/[N].

Fig. S3 The H^1 NMR in water phase after extracted with the chloroform solutions of

Fig. S4 The typical DLS profiles of different concentration of (A) HPEI, (B) D1-C16,(C) D2-C16, (D) D1-C8, (E) C16 and (F) C8 in chloroform.

Fig. S5 The morphology of the complex architecture and its aggregates were determined by TEM measurements. A: HPEI+D1-C16 in chloroform; B: HPEI+D1-C16 chloroform solution contacted with water; C: HPEI+D1-C16 chloroform solution contacted with MO aqueous solution. The concentration of D1-C16 is 6.28×10^{-4} mol/L, and the concentration of HPEI is 5×10^{-6} mol/L; the [COOH]/[N] ratio of complex is 0.54.

Fig. S6 The typical evolution of DLS profiles of the mixture of HPEI with (A) D1-C16 and (B) C16 in chloroform at different time ([HPEI]= 2.0×10^{-6} M, [COOH]/[N]=0.73)

			Before mixing		Complex (nm) ^d	Organic phase after shaking with water (no MO)(nm) ^e	Organic	
Abbreviatio n	[COOH] /[N] ^a (/10 ⁻⁶ M		HPEI (nm) ^b	Hydrophobic molecules(nm) ^c			pnase (contains MO) after encapsul ation (nm) ^f	
HPEI+	0.54	2	30.3	D2-C16	85.0	17.6	943	827.8
D2-C16		5	37.2		234.7	14.2	1311	1569
	0.27	10	64.9	D1-C16	141.9	8.5	810	2410
IDEL	0.54	2	30.3		134.7	6.2	1930	1055
HPEI+ D1 C16		5	37.2		141.9	9.8	1834	1837
DI-C16		10	64.9		220.7	5.4	1792	1183
	0.73	10	64.9		127.4	13.0	1114	2164
HPEI+C16	0.27	10	64.9	C16	226.6	7.4	687	1654
	0.54	2	30.3		483.5	13.8	1827	1023
		5	37.2		226.6	6.8	3570	1089
		10	64.9		188.4	4.6	1231	1519
	0.73	10	64.9		386.1	10.1	1591	3702

Table S2 The main diameter of supramolecular complexes and their precursors.

^a[COOH]/[N] represents the ratio of carboxylic acid to the total amino groups of HPEI; ^{b,c}The diameter of monomer in chloroform before mixing respectively. ^dThe diameter of complex in chloroform. ^eThe diameter of complex in chloroform phase after shaking with water and resting. ^fThe diameter of complex in chloroform phase after shaking with MO aqueous solutions and resting. ^{b,c,d,e,f}The results are all obtained by Nano ZS.

Fig. S7 The effect of polymer concentration on (A) the absorbance intensity of CR at in chloroform, (B) the encapsulation capacity of the nanocarrier (initial concentration

of CR in water is 0.30 mg/mL)

PD2-1, PD1-1, PD1-2, PD1-3, PL-1, PL-2 and PL-3 are corresponding covalent chemical compounds HPEI-D2-C16-0.27, HPEI-D1-C16-0.27, HPEI-D1-C16-0.54, HPEI-D1-C16-0.73, HPEI-C16-0.27, HPEI-C16-0.54 and HPEI-C16-0.73 respectively. When the concentration of polymer is less than 1×10^{-6} mol/L , the number of dyes in organic solutions increased linearly with the enlargement of polymer concentration and the trend lines through original point without exception (Fig. S6A). All the polymers are unimolecule morphology of nanocapsules. In addition, the capacity of dye encapsulation is unaffected by the concentration of polymers (Fig. S6B).

Fig. S8 Illustration of liquid-liquid encapsulation protocol

Fig. S9 The UV-vis spectra of MO, EY and FS in water and complexes of MO, EY

and FS with complexes in chloroform.

Scheme S1 Exemplifed as D1-C16 and complex HPEI-D1-C16. (A)(B)(C): Under the fixed [COOH]/[N], the growth process of formed aggregate in the chloroform with the increase of the HPEI concentration. (D): When the aggregate grows to a certain degree, its size and ability of

encapsulation are both no further change with the increase of HPEI concentration. From (E) to (G): the complex ratio of [COOH]/[N] increased successively, the contrast of encapsulated ability about the formed aggregates under the same concentration of HPEI. (H): When the ratio of [COOH]/[N] is up to a certain value, the peripheral carbon chain density of the aggregate would be saturated, and the encapsulated ability would hardly change even if more carboxyl acid molecules joined.

Fig. S10 The effect of HPEI concentration on the encapsulation capacity of the nanocarrier (initial concentration of MO in water is 2.14×10^{-4} mol/L, the ratio of [COOH]/[N] is 0.27, 0.73 and 1.0)

	HPEI+C16	HPEI+D1-C16	HPEI+D2-C16
[COOH]/[N]	×10 ⁻⁶ M	×10 ⁻⁶ M	×10-6 M
0.27	10	5	5
0.54	7	5	4.5
0.73	5	3.5	3.5
1	5	3.5	3.5

 Table S3 The Saturated Concentration of complex in chloroform.

Fig. S11 The effect of HPEI concentration on the encapsulation capacity of the nanocarrier after the solutions equilibrating for 3 days and 60 days. (A): HPEI+C16-0.54; (B): HPEI+D1-C16-0.54; (C): HPEI+D2-C16. (The ratio of [COOH]/[N] is 0.54)

Fig. S12 The effect of HPEI concentration on the distribution of size after the solutions equilibrating for 60 days.

Table S4 The Saturated Ratio of [COOH]/[N] of complex in chloroform.

HPEI Concentration	HPEI+C16	HPEI+D1-C16	HPEI+D2-C16
2.0×10 ⁻⁶ M	>1	>1	>1
3.5×10 ⁻⁶ M	1	0.73	1
5.0×10 ⁻⁶ M	0.73	0.54	0.73
7.5×10 ⁻⁶ M	0.54	0.27	0.27
1.0×10 ⁻⁵ M	< 0.27	<0.27	<0.27

Fig. S13 Images of liquid-liquid encapsulation of different complexes for MO (Upper phase: water; lower phase: chloroform; HPEI concentration is around 5×10^{-6} M; [COOH]/[N] of complexes is all 0.73)

Fig. S14 The effect of HPEI concentration of HPEI+D1-C8-0.54 on the distribution of size.

Fig. S15 Effect of the chain length of the shell of the covalent polymers on their guest encapsulation capacity.