BODIPY-based colorimetric/ratiometric fluorescence probes for sulfite in

aqueous solution and in living cells

Shanshan Liu,^aLun Song,^a Qian Sun,^aZhaoyang Chen,^a Yu Ge,^bWeibing Zhang^a and Junhong Qian^{*a}

^aShanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

^bShanghai Institute of Quality Inspection and Technical Shanghai, 200233, China.

junhongqian@ecust.edu.cn

Supporting Information

Contents

Experiment	S2
NMR spectra of M1 and M2	S4
NMR and ESI spectra of M3, BSP1 and BSP2	S5
The absorption and emission spectra of BSP1 in different solvents	S11
The concentration-dependent absorption spectra of BSP1 in PBS	S12
Plot of fluorescence intensity vs. absorbance of BSP1	S13
I_{554}/I_{618} vs. time of BSP1 in the presence of sulfite	S14
The influence of pH value on I_{554}/I_{618} of BSP1	S15
The concentration-dependent absorption spectra of BSP2 in PBS	S16
The normalized absorption spectra of BSP1 and BSP2	S17
Time-dependent absorption and emission spectra of BSP2 in CTAB-PBS	S18
Sulfite effect on the absorption spectrum of BSP2	S19

Experiment

Materials and reagents

All the commercial reagents and solvents (Aladdin Corporation) were of analytical grade and used without further purification. Ultra-pure water was prepared through a Sartorius Arium 611DI system. Phosphate salts were used to keep a stable pH and ion strength in detection systems. Absorption spectra were measured with an Evolution 220 UV-Visible spectrophotometer (Thermo Scientific). Fluorescence spectra were conducted on a Lumina Fluorescence Spectrometer (Thermo Scientific). All pH measurements were performed with a model FE20 meter purchased from Mettler Toledo. NMR spectra were recorded using a Bruker AV-400 spectrometer (400MHz). Mass spectra were performed with a MA 1212 Instrument using standard condition (ESI, 70 eV).

Time titration of sulfite-probe systems

3 mM of the stock solutions of **BSP1** and **BSP2** in DMF were prepared ahead. The stock solution of **BSP1** or **BSP2** was diluted with PBS (20 mM, pH 7.4) with or without 1 mM CTAB to acquire 1×10^{-5} M dye aqueous solution. 50 µL of 30 mM freshly prepared Na₂SO₃ in PBS (20 mM, pH 7.4) were added to 3 mL of 1×10^{-5} M dye aqueous solution. Absorption and emission spectra of the above solution were collected at different intervals.

Sulfite titration

 $0 \sim 50 \ \mu\text{L}$ of 30 mM Na₂SO₃ in PBS were added into 3 mL of 1×10^{-5} M **BSP1** in CTAB-PBS or **BSP2** in PBS solutions. The spectra were recorded 2 h and 20 min after each addition of sulfite to **BSP1** and **BSP2** solutions, respectively.

HPLC traces

High-performance liquid chromatography (HPLC) spectra were carried out on an Agilent Technologies 1260 Infinity LC system. The mobile phases were degassed with an ultrasonic apparatus for 14 min. Mobile phase: A: water, B: acetonitrile; gradient elution: $2-8 \min 10-95\%$ B, $10-12 \min 95-10\%$ B; Isocratic elution: $0-2 \min 10\%$ B, $8-10 \min 95\%$ B, and $12-14 \min 10\%$ B. Injection volume: 10μ L; flow rate: 1.0 mL/min; detection wavelength: isosbestic point 512 nm.

Live cell culture and fluorescence imaging

HeLa cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) in an atmosphere of 5% CO₂ and 95% air at 37 °C. The cells were washed with phosphate buffered solution (PBS, 20 mM, pH 7.4) and pre-incubated with 500 μ M Na₂SO₃, then incubated with **BSP1** (10 μ M) and CTAB (1 mM) in DMEM for 120 min at 37 °C and washed 3 times with PBS. For the control experiment, the cells were only incubated with 10 μ M of **BSP1** and CTAB (1 mM) for 120 min. Cell imaging was carried out after washing the cells with PBS. Emission was collected at 500-550 nm for the green channel and at 570–620 nm for the red channel. The excitation wavelength was set at 514 nm for green and red channels.

Fig. S1 ¹H-NMR spectra of M1 and M2.

Fig. S2¹H-NMR, ¹³C-NMR, MS and IR spectra of M3.

Fig. S3 ¹H-NMR, ¹³C-NMR, MS and IR spectra of BSP1.

Fig. S4¹H-NMR, ¹³C-NMR, MS and IR spectra of BSP2.

Fig. S5 The absorption (a) and emission (b) spectra of BSP1 (10 μ M) in different solvents.

Fig. S6 The absorption spectra of BSP1 with different concentrations in PBS.

Fig. S7 Plot of fluorescence intensity vs. absorbance of BSP1.

Fig. S8 I₅₅₄/I₆₁₈ vs. time of **BSP1**-sulfite system. [**BSP1**] =10 μ M, [sulfite] = 500 μ M, 1 mM CTAB-PBS (20 mM, pH 7.4), λ_{ex} = 512 nm, 25°C.

Fig. S9 The effect of pH value on the fluorescence intensity of **BSP1** at 618 nm and I_{554}/I_{618} of **BSP1**-SO₃H (a), and the absorbance of **BSP1** at 554 nm and A_{494}/A_{554} of **BSP1**-SO₃H (b), 1 mM CTAB-PBS (20 mM).

Fig. S10 The absorption spectra of BSP2 with different concentrations (1~30 μ M) in PBS.

Fig. S11 The normalized absorption spectra of BSP1 and BSP2.

Fig. S12 Time-dependent absorption (a) and emission (b) spectra of **BSP2** (10 μ M) in the presence of 500 μ M of sulfite in 1 mM CTAB-PBS (20 mM, pH 7.4) system, λ_{ex} = 520 nm.

Fig. S13 (a) The absorption spectra of **BSP2** with different concentrations of sulfite; (b) the absorbance ratio at 470 nm and 567 nm (A_{470}/A_{567}) as a function of sulfite concentration. 20 mM PBS, pH 7.4, 25°C, [**BSP2**] = 10 μ M, recorded 20 min after each addition.