Supplementary Information

Methane activation on Fe- and FeO-embedded graphene and boron nitride sheet: role

of atomic defects in catalytic activities

Sarawoot Impeng,^{ab} Pipat Khongpracha,^{ab} Jakkapan Sirijaraensre,^{ab} Bavornpon Jansang,^c Masahiro

Ehara^d and Jumras Limtrakul*abe

^aDepartment of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^bCenter for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

^cPTT Research and Technology Institute, PTT Public Company Limited, Phahonyothin Rd., Sanubtub, Wangnoi, Ayutthaya 13170, Thailand

^dInstitute for Molecular Science, Nishigo-naka 38, Myodai-ji, Okazaki 444-8585, Japan

^eDepartment of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

*Corresponding author: Fax: +66 2562 5555 ext 2176. E-mail address: jumras.limtrakul@vistec.ac.th

Table S1 Electronic energies for Fe-BN, Fe-GP, FeO-BN, and FeO-GP catalysts from PBE calculations.

System	Spin multiplicity	*Relative energy (kcal mol ⁻¹)
Fe-BN	Doublet	0.0
	Quartet	17.0
	Sextet	50.3
	Octet	111.4
Fe-GP	Singlet	0.0
	Triplet	7.9
	Quintet	40.2
	Septet	74.6
FeO-BN	Doublet	9.2
	Quartet	0.0
	Sextet	39.5
	Octet	104.2
FeO-GP	Singlet	0.1
	Triplet	0.0
	Quintet	31.1
	Septet	78.5

*Relative energy compared to the most stable state

Table S2 Calculated adsorption energies for methane (CH_4) adsorption on perfect boron nitride (BN) sheet and perfect graphene (GP).

System	Adsorption energy (kcal mol ⁻¹)			
System	PBE/DNP	PBE+D2//PBE/DNP		
CH ₄ /BN at B atom	-0.7	-3.9		
CH ₄ /BN at N atom	-0.7	-4.0		
CH ₄ /GP	-0.5	-2.9		

Table S3 Adsorption energies (kcal mol⁻¹) of methane adsorbed on Fe-BN and Fe-GP catalysts at various fashions of methane interacted to the Fe active center calculated by PBE+D2//PBE/DNP. η^1 and η^3 fashions on Fe-BN was not found.

Fashion of methane	CH ₄ /BN	CH ₄ /GP
η^1	-	-5.2 (-2.9)
η^2	-14.4 (-11.1)	-11.6 (-8.1)
η^3	-	-10.5 (-7.0)

Table S4 Structural parameters for CH₄/Fe-BN system. Bond distances are in Å.

Daramatar	CH ₄ /Fe-BN system					
Parameter	Isolate state	Adsorption	Transition state	Product		
Fe–B1	1.90	1.93	1.95	2.02		
Fe–B2	1.90	1.92	1.92	1.93		
Fe–B3	1.90	1.90	1.95	1.98		
Fe–H _m	-	1.88	1.51	1.54		
Fe–C _m	-	2.24	1.99	1.96		
C _m –H _m	1.10	1.13	1.63	2.46		
$C_m - H_m'$	1.10	1.12	1.11	1.11		
B1–H _m	-	2.95	2.04	1.42		

Table S5 Structural parameters for CH₄/Fe-GP system. Bond distances are in Å.

Doromotor	CH ₄ /Fe-BN system					
Falameter	Isolate state	Adsorption	Transition state	Product		
Fe-C1	1.77	1.78	1.86	1.90		
Fe–C2	1.77	1.78	1.78	1.78		
Fe-C3	1.77	1.78	1.78	1.78		
Fe–H _m	-	1.96	1.48	1.58		
Fe–C _m	-	2.37	1.98	1.98		
C _m –H _m	1.10	1.12	1.85	2.40		
$C_m - H_m$	1.10	1.11	1.10	1.10		
C1–H _m	-	2.78	1.73	1.23		

	CH ₄ /FeO-BN system							
Parameters	Isolated state	ADS_CH_4	TS1	INT_radical	INT_ nonradical	TS2_radical	TS2_ nonradical	PROD_ CH ₃ OH
Fe–B1	1.99	1.99	1.97	1.98	1.96	1.96	1.92	1.92
Fe–B2	2.00	2.00	1.95	1.98	2.07	1.96	1.98	1.91
Fe–B3	1.99	1.99	2.00	1.94	1.98	1.96	1.93	1.91
Fe–O	1.63	1.63	1.72	1.77	1.77	1.84	1.87	2.03
O–H _m	-	2.46	1.10	0.97	0.97	0.98	0.98	0.98
$C_m - H_m$	1.10	1.10	1.48	1.09	1.10	1.09	1.10	-
Fe–C _m	-	-	-	-	1.97	2.46	2.41	-
O–C _m	-	-	-	3.20	3.29	1.98	1.88	1.46

Table S6 Structural parameters for CH₄/FeO-BN system (only the lowest spin state of each reaction step). Bond distances are in Å.

Fig. S1 Spin density for (a) Fe-BN [doublet state] and (b) FeO-BN [quartet state]. The green and red regions illustrate α -electron and β -electron density. The isosurface value is ± 0.03 e Å⁻³.

CH₄/BN complex, CH₄ adsorbed at B atom

CH₄/BN complex, CH₄ adsorbed at N atom

Fig. S2 Optimized structures of methane (CH₄) adsorbed on perfect boron nitride (BN) and perfect graphene (GP) sheet.

Fig. S3 Energy profiles for methane activation over Fe-GP calculated at PBE-D2. Energies are in kcal mol⁻¹.

Fig. S4 Energy profiles for methane activation over Fe-BN calculated at PBE-D2. Energies are in kcal mol⁻¹.

Fig. S5 Spin density for methane activation over Fe-BN on doublet potential energy surface: (a) Adsorption, (b) Transition state, and (c) Product. The green and red isosurfaces stand for α -electron and β -electron density and the isosurface plotted at ± 0.03 e Å⁻³.

Fig. S6 Energy profiles for methane oxidation over FeO-BN calculated at PBE-D2. Energies are in kcal mol⁻¹.

Fig. S7 Spin density for methane oxidation over FeO-BN: (a) Methane adsorption (ADS_CH₄) (b) Transition state C–H bond cleavage (TS1), (c) Intermediate radical (INT_radical), (d) Transition state radical methanol formation (TS2_radical), (e) Intermediate nonradical (INT_nonradical), (f) Transition state nonradical methanol formation (TS2_nonradical), and (g) methanol product adsorption (PROD_CH₃OH). The green isosurface represents α -electron and the red one represents β -electron density. The isosurface value is ± 0.03 e Å⁻³.

Fig. S8 Electron density difference map for methane adsorption over (a) Fe-BN and (b) Fe-GP. The blue and yellow colors indicate the region of electron accumulation and depletion, respectively. The isosurface value is ± 0.005 e Å⁻³.

Fig. S9 Electron density difference map for methane adsorption over FeO-BN. The blue and yellow colors indicate the region of electron accumulation and depletion, respectively. The isosurface value is ± 0.005 e Å⁻³.

Fe-BN (SW) at the most stable configuration

Fig. S10 Optimized structures of Fe adsorbed over Stone-Wales defect (SW) graphene (GP) and boron nitride (BN) sheet.