Three independent channels nanohybrids as fluorescent probes

Soranyel Gonzalez-Carrero^a, Carlos Agudelo-Morales^a, Miguel de la Guardia,^b Raquel E. Galian, ^{a,*} and Julia Pérez-Prieto^{a,*}

Supplementary information

Synthesis of nitrotoluene (TNT) Figure S1. HRTEM image of CS@Py	S2
Table S1. PL data of CS, CS@PY and PySH in tetrahydrofuran at room temperature	S 3
Figure S2: Fluorescence decay kinetics and their fitting to exponential functions of time for Monomer, Excimer and Nanoparticle of CS@Py, in tetrahydrofuran	S 4
Figure S3 and S4: Absorption and emission spectra (λ_{exc} = 340 nm) of CS@Py at different concentration of the NAC (0-0.25 mM) in THF, under N ₂ atmosphere.	S5-6
Figure S5: Stern-Volmer plots showing the intensity and lifetime dependence of M*, E*, and CS* emission of CS@Py on NAC concentration.	S 7
Table S2 Stern-Volmer quenching constants for pyrene monomer, M*,pyrene excimer, E*, and nanoparticle in the CS@Py hybrid	S8
Table S3. Quantification of TNT in TNT/NB/2,4DNT ternary mixtures	S9

Synthesis of trinitrotoluene (TNT)

TNT synthesis was performed following the procedure described in the literature.^{1,2} Briefly, fuming sulfuric acid 30% (1.95 mL) was added in a three-necked flask (25 mL), and was cooled down to 0 °C in an ice-water bath. Then nitric acid 100% (0.6 mL) is add drop by drop under magnetic stirring, taking care that the reaction temperature does not exceed 15 °C. Subsequently 2,4-DNT (0.854 g) was added to the acid mixture, and the temperature was slowly increased to 90 °C, and allowed to stir 2 hours at this temperature. After, the reaction was allowed to cool (at 30 °C) and was add to deionized water (50 mL), and extracted in a separator funnel with dichloromethane. The extracts were dried with MgSO₄, and the solvent was evaporated under vacuum. Yellow solid was obtained with a yield of 70 %. The solid was recrystallized in chloroform-ethanol mixture, to give a yellow crystalline solid.

- 1. W. H. Dennis, D. H. Rosenblatt, W. G. Blucher and C. L. Coon, Journal of Chemical & Engineering Data, 1975, 20, 202-203.
- 2. R. C. Dorey and W. R. Carper, Journal of Chemical & Engineering Data, 1984, 29, 93-97.

Figure S1. HRTEM images of CS@Py, diameter 8.4 ± 1.5 nm. Scale bar: a) 20 nm and b) 5 nm.

	λ_{em}/nm^a	$\Phi_{F}{}^{b}$	$ au_1/ns$ (A ₁ %) ^c	τ ₂ /ns (A ₂ %)°	τ _{average} /ns ^e	Kk _r (s-	k _{nr} (s- ¹)
CS	640	37.7	45.5 (53)	16.0 (47)	38.4	9.82 10 ⁶	16.2 10 ⁶
PySH	397		94.7 (100) ^d				
	398		87.4 (36)	15.9 (64)			
	480		53.3 (100)	17.3 (-112)			
CS@PY	640	21.0	43.1 (46)	11.8 (56)	35.3	5.95 10 ⁶	22.4 10 ⁶
$a\lambda_{exc} = 340$ biexponent $\Sigma A_i \tau_i^2 / \Sigma A_i \tau_i$	nm. ^b P ial fit. ^d N	hotolun Ionoex	ninescence qu ponential fit.	antum yield. ^e Average life	^c Relative c etime, calcula	contribution to ate as τ	on to the average=

 Table S1. PL data of CS, CS@PY and PySH in tetrahydrofuran at room temperature

Figure S2: Kinetic decay traces and their fitting to exponential functions of time for the emissive species of CS@Py in THF (λ_{exc} = 340 nm): a) M* (λ_{em} = 397 nm), b) E* (λ_{em} = 480 nm), and c) CS*.

NB

Figure S3: a) absorption and b) emission spectra (λ_{exc} = 340 nm) of CS@Py (5 nM) at different concentration of the NAC (0-0.25 mM) in THF, under N₂ atmosphere.

Figure S4: a) absorption and b) emission spectra (λ_{exc} = 340 nm) of CS@Py (5 nM) at different concentration of the NAC (0-0.25 mM) in THF, under N₂ atmosphere.

Figure S5. Stern-Volmer plots showing the intensity (—), and lifetime (----) dependence of M*, E*, and CS* emission of CS@Py (5 nM in THF, λ exc = 340 nm) on NAC concentration.

	K _d				
	M*	E*	CS*		
NB	838 ± 83 (0.990)	1654 ± 30 (0.998)	b		
2NT	1780 ± 117 (0.980)	1440 ± 103 (0.980)	238 ± 32 (0.990)		
3NT	2014 ± 74 (0.992)	1676 ± 58 (0.993)	157 ± 3 (0.996)		
4NT	2431 ± 160 (0.988)	1509 ± 72 (0.990)	194 ± 10 (0.990)		
2,4 DNT	1193 ± 58 (0.980)	1243 ± 15 (0.998)	182 ± 21 (0.990)		
2,6 DNT	2374 ± 230 (0.980)	2090 ± 88 (0.992)	244 ± 9 (0.992)		
TNT	2094 ± 101 (0.990)	2208 ± 108 (0.985)	456 ± 10 (0.998)		

Table S2 Dynamic quenching constants of pyrene monomer, M^* , pyrene excimer, E^* , and nanoparticle excited state (CS*) in the CS@Py hybrid, by the nitroaromatic compounds.

 ${}^{a}K_{d}$, (M⁻¹); data obtained from the time-resolved studies. Measurements.^b Too small to be determined

	Calculated concentration (mM)						
	C _{TNT} /C _{NB} / C _{2,4DNT} 1:0.5:0.5 molar ratio ^a			$\frac{C_{TNT}/C_{NB}}{1:1:1} \text{ molar ratio }^{\mathrm{b}}$			
	C _{TNT} (E %) ^c	С _{NB} (Е %)	C _{2,4DNT} (E %)	C _{TNT} (E %)	C _{NB} (E %)	C _{2,4DNT} (E %)	
M*	0.151 (2.3)	0.081 (9.5)	0.080 (8.6)	0.168 (11.2)	0.183 (23.1)	0.180 (21.0)	
E*	0.152 (2.9)	0.081 (8.5)	0.082 (10.7)	0.175 (15.6)	0.186 (24.5)	0.193 (29.5)	
CS*	0.141 (4.9)	0.068 (8.4)	0.070 (5.7)	0.152 (6.3)	0.173 (16.1)	0.164 (10.3)	

Table S3. Quantification of TNT in TNT/NB/2,4DNT ternary mixtures

^a Theoretical concentration: 0.148 mM (TNT) and 0.074 mM (NB and 2,4DNT). ^bTheoretical concentration: 0.151 mM (TNT) and 0.149 mM (NB and 2,4DNT).

"The E% is the ratio of the absolute error of the measurement (i.e., the difference between measured value and the actual value) to the actual value multiply by 100