Supporting Information

Formal Total Synthesis of Calothrixin B and Its N-Benzyl Analogues
Nagarajan Ramkumar and Rajagopal Nagarajan*
School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
E-mail: rnsc@uohyd.ernet.in

Table of Contents
General information S2
Experimental procedures and Characterization data S2-S8
References S8
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra for all compounds S9-S32

General Information and Methods:

The NMR experiments were performed with 400 MHz or 500 MHz spectrometer, and chemical shifts are expressed in $\mathrm{ppm}(\delta)$ with TMS as an internal reference. Coupling constant J values are given in Hz . IR spectra were recorded by using KBr pellets or neat. ESITOF mass analyzer type used for the HRMS measurements. Reactions were carried out under an inert atmosphere refer to the use of nitrogen and monitored by TLC. Column chromatography was performed on silica gel (100-200 mesh) in glass columns to purify the compounds. Solvents tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N -methyl-2pyrrolidone (NMP) and anisole were dried by using standard distillation methods. Commercially available reagents and solvents were used without further purification and were purchased. Melting points were determined using open capillary tubes and are uncorrected.

Procedure for the synthesis of 8-bromophenanthridine-7,10-dione (5):

To a soultion of 8-bromo-7,10-dimethoxy-5-(methoxymethyl)phenanthridin-6(5H)-one 3 (1 g, 2.6 mmol) in dry THF $(30 \mathrm{~mL}), \mathrm{LiAlH}_{4}(500 \mathrm{mg}, 13.2 \mathrm{mmol})$ was added a portionwise at 0 ${ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to stir at the same temperature for 2 h . After completion (TLC), the mixture was poured into 150 g of crushed ice. The precipitate formed was filtered through a celite pad and repeatedly washed with ethyl acetate (50 mL). The combined filtrate was further extracted with ethyl acetate (50 mL) and separated. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude oil.

The crude oil obtained (800 mg) was redissolved in acetonitrile (40 mL) and distilled water $(20 \mathrm{~mL})$. To this solution, CAN ($700 \mathrm{mg}, 1.26 \mathrm{mmol}$) was added and stirred for 2 h at room temperature. After completion of the reaction (TLC), the reaction mixture was poured into water $(100 \mathrm{~mL})$, extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

The solvent was evaporated to afford crude oil which was purified by silica gel column chromatography using petroleum ether/ethyl acetate.
$\mathrm{R}_{f}=0.41$ (petroleum ether: EtOAc, 4:1); yellow solid ($584 \mathrm{mg}, 78 \%$): mp $124-126^{\circ} \mathrm{C}$; IR (neat): 2968, 1738, 1588, 1365, 1212, 1013, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.65$ (s, $1 \mathrm{H}), 9.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 188.1,185.3,152.0,147.5,139.9$, 136.2, 132.1, 131.6, 130.6, 130.3, 127.6, 122.8, 122.0; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{BrNO}_{2} 309.9480$, found 309.9483 .

Procedure for the synthesis of 8-(2-chlorophenyl)phenanthridine-7,10-dione (7):

To a solution of 8-bromophenanthridine-7,10-dione 5 ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) and (2chlorophenyl)boronic acid $6(540 \mathrm{mg}, 3.4 \mathrm{mmol})$ in $\operatorname{DMF}(5 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(196 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(470 \mathrm{mg}, 3.4 \mathrm{mmol})$ were added. The resulting mixture was stirred at 140 ${ }^{\circ} \mathrm{C}$ for 8 h . After completion (TLC), the mixture was poured into water (100 mL) and extracted with ethyl acetate, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give crude residue which was purified by silica gel column chromatography using petroleum ether/ethyl acetate.
$\mathrm{R}_{f}=0.36$ (petroleum ether: EtOAc, 7:3); yellow solid (469 mg, 84\%): mp 206-208 ${ }^{\circ} \mathrm{C}$; IR (neat): 2978, 1658, 1588, 1335, 1212, 1043, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.77$ (s, $1 \mathrm{H}), 9.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 187.9, 185.2, 152.1, 147.9, 140.1, 136.2, 135.1, 133.2, 131.3, 130.3, 130.1, 128.0, 127.8, 127.7, 125.1, 124.4, 123.9, 123.3, 123.1; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClNO}_{2}$ 320.0478, found 320.0475.

General procedure for copper-catalyzed domino synthesis of N-benzylcalothrixins (9a-

 i):A Schlenk tube was equipped with a magnetic pellet, evacuated and back-filled with nitrogen. 8-(2-Chlorophenyl)phenanthridine-7,10-dione $7(60 \mathrm{mg}, 0.18 \mathrm{mmol})$, appropriate benzylamine 8a-i (1.1 equiv), Cu powder ($1 \mathrm{mg}, 0.015 \mathrm{mmol}$), $\mathrm{CuO}(3 \mathrm{mg}, 0.036 \mathrm{mmol}), t-$ BuOK ($42 \mathrm{mg}, 0.37 \mathrm{mmol}$) and NMP (1 mL) were added. The resulting mixture was heated at $140{ }^{\circ} \mathrm{C}$ for appropriate time under nitrogen atmosphere. After completion of the reaction, the mixture was poured into water $(25 \mathrm{~mL})$ and filtered through a celite pad and washed with chloroform $(60 \mathrm{~mL})$. The organic layer was separated and washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give crude residue which was purified by silica gel column chromatography using petroleum ether/ethyl acetate.

12-Benzyl-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9a):

$\mathrm{R}_{f}=0.30$ (petroleum ether: EtOAc, 4:1); red solid ($57 \mathrm{mg}, 78 \%$): mp 260-262 ${ }^{\circ} \mathrm{C}$; IR (neat): 3040, 1653, 1538, 1430, $1258 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.44(\mathrm{dd}, J=1.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H})$, 7.75-7.71 (m, 1H), 7.46-7.40 (m, 3H), 7.34-7.28 (m, 3H), $7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 181.9,181.0,152.1,147.8,140.1,136.2,135.1,133.2$, 131.1, 130.3, 130.1, 128.9 (2C), 128.0, 127.8, 127.6, 126.6 (2C), 125.1, 124.4, 123.9, 123.2, 123.1, 117.6, 111.5, 48.5; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ 389.1290, found 389.1289.

12-(4-Methylbenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9b):

$\mathrm{R}_{f}=0.65$ (petroleum ether: EtOAc, 7:3); red solid ($57 \mathrm{mg}, 76 \%$): mp 246-248 ${ }^{\circ} \mathrm{C}$; IR (neat): 3030, 2922, 1736, 1649, 1522, 1459, 1239, 1075, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $9.77(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$
$(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.94(\mathrm{~s}$, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 181.9,180.9,152.0,147.8,140.0,137.6$, $135.0,133.26,133.22,131.3,130.2,130.0,129.5$ (2C), 127.9, 127.7, 126.6 (2C), 125.1, 124.4, 123.8, 123.2, 123.1, 117.6, 111.6, 48.3, 21.0; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} 403.1446$, found 403.1439.

12-(4-Methoxybenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9c):

$\mathrm{R}_{f}=0.61$ (petroleum ether: EtOAc, 7:3); red solid ($63 \mathrm{mg}, 81 \%$): mp 230-232 ${ }^{\circ} \mathrm{C}$; IR (neat): $3008,2248,1740,1369,1222,1050,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.74(\mathrm{~s}, 1 \mathrm{H})$, $9.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.88 (s, 2H), 3.75 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ 181.8, 180.8, 159.2, $152.1,147.8,139.9,134.9,133.1,131.3,130.3,130.0,128.3,128.1$ (2C), 127.8, 127.6, 125.0, 124.4, 123.8, 123.2, 123.0, 117.5, 114.2 (2C), 111.5, 55.2, 47.9; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} 419.1395$, found 419.1382.

12-(4-Chlorobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9d):

$\mathrm{R}_{f}=0.65$ (petroleum ether: EtOAc, 7:3); red solid (49 mg, 63%): mp 242-244 ${ }^{\circ} \mathrm{C}$; IR (neat): 2920, 1739, 1646, 1456, 1365, 1229, 1075, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.80(\mathrm{~s}$, $1 \mathrm{H}), 9.54(\mathrm{dd}, J=1.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.46(\mathrm{~m}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (td, $J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 182.0,181.0$, $152.2,147.8,140.0,135.0,134.7,133.8,133.2,131.4,130.4,130.2,129.1$ (2C), 128.2, 128.0 (2C), 127.6, 125.3, 124.4, 124.0, 123.3, 123.1, 117.8, 111.3, 47.9; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} 423.0900$, found 423.0896.

12-(4-Fluorobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9e):

$\mathrm{R}_{f}=0.72$ (petroleum ether: EtOAc, 7:3); red solid ($44 \mathrm{mg}, 58 \%$): mp 228-230 ${ }^{\circ} \mathrm{C}$; IR (neat): 2920, 2851, 1649, 1506, 1463, 1339, 1232, 1074, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $9.79(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-$ $7.82(\mathrm{td}, J=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.73(\mathrm{td}, J=1.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 182.0$, $180.9,152.1,147.8,139.9,134.9,133.2,132.0,131.9,131.4,130.3,130.2,128.5,128.4$, 128.1, 127.6, 125.2, 124.4, 124.0, 123.3, 123.1, 117.7, 111.3, 47.9; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2}$ 407.1196, found 407.1189.

12-(3,4-Dimethoxybenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9f):

$\mathrm{R}_{f}=0.64$ (petroleum ether: EtOAc, 1:1); red solid ($72 \mathrm{mg}, 86 \%$): mp 186-188 ${ }^{\circ} \mathrm{C}$; IR (neat): 2922, 1733, 1645, 1512, 1239, 1139, 1019, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.70(\mathrm{~s}$, 1H), 9.48 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.85$ (s, 2H), $3.809(\mathrm{~s}, 3 \mathrm{H}), 3.804(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 181.8,180.7,152.0$, $149.2,148.7,147.7,139.9,134.9,133.0,131.3,130.2,130.0,128.7,127.8,127.6,125.0$, 124.3, 123.7, 123.1, 123.0, 119.0, 117.5, 111.5, 111.3, 110.3, 55.9, 55.8, 48.2; HRMS (ESI): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} 448.1423$, found 448.1433 .

12-(2,4-Dichlorobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9g):

$\mathrm{R}_{f}=0.57$ (petroleum ether: EtOAc, 4:1); red solid ($37 \mathrm{mg}, 46 \%$): mp 256-258 ${ }^{\circ} \mathrm{C}$; IR (neat): 3004, 2127, 1710, 1424, 1359, 1219, $783 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.84(\mathrm{~s}, 1 \mathrm{H})$, $9.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H})$; Note: ${ }^{13} \mathrm{C}$ NMR was unable to record due to its poor solubility in common NMR solvents. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ 457.0510, found 457.0512.

12-(3-Methoxybenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9h):

$\mathrm{R}_{f}=0.56$ (petroleum ether: EtOAc, 7:3); red solid ($62 \mathrm{mg}, 80 \%$): mp 192-194 ${ }^{\circ} \mathrm{C}$; IR (neat): 2945, 2837, 1649, 1457, 1239, $749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 9.56$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 3 \mathrm{H})$, $6.00(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 182.0,181.0,160.0,152.2,147.9$, $140.1,137.8,135.1,133.3,131.3,130.3,130.1,130.0,128.0,127.7,125.1,124.5,123.9$, 123.3, 123.1, 118.8, 117.7, 112.8, 112.6, 111.5, 55.2, 48.4; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} 419.1395$, found 419.1387.

12-(2-Bromobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9i):

$\mathrm{R}_{f}=0.50$ (petroleum ether: EtOAc, $4: 1$); red solid ($59 \mathrm{mg}, 68 \%$): mp 234-236 ${ }^{\circ} \mathrm{C}$; IR (neat): 2968, 1738, 1588, 1446, 1365, 1212, 1013, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.75(\mathrm{~s}$, $1 \mathrm{H}), 9.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.78(\mathrm{td}, J=$ $1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{td}, J=$ $1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{td}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.38(\mathrm{dd}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 181.8,180.9,152.1,147.8,139.9,135.3,135.2$, $133.1,133.0,131.5,130.27,130.21,129.1,128.2,127.9,127.6,126.3,125.4,124.4,123.9$, 123.2, 123.0, 122.0, 117.8, 111.3, 49.0; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 467.0395, found 467.0398.

Procedure for the synthesis of $\mathbf{7 H}$-indolo[3,2-j]phenanthridine-7,13(12H)-dione

 (Calothrixin B) (2):To a solution of 12-(3,4-dimethoxybenzyl)-7 H -indolo[3,2-j]phenanthridine-7,13(12H)-dione 9f ($25 \mathrm{mg}, 0.055 \mathrm{mmol}$) in dry anisole (3 mL), anhydrous $\mathrm{AlCl}_{3}(37 \mathrm{mg}, 0.277 \mathrm{mmol})$ was added and heated at $100^{\circ} \mathrm{C}$ for 8 h . After completion of the reaction, the reaction mixture was quenched with water and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL) and separated, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give crude residue which was purified by silica gel column chromatography using petroleum ether/ethyl acetate.
$\mathrm{R}_{f}=0.30$ (petroleum ether: EtOAc, 5:1); red solid ($11 \mathrm{mg}, 68 \%$): mp $>300^{\circ} \mathrm{C}$ (lit. ${ }^{1} \mathrm{mp} \geq 300$ ${ }^{\circ} \mathrm{C}$); IR (neat): 3430, 2968, 1653, 1425, $1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 9.60$ (s, $1 \mathrm{H}), 9.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.14(\mathrm{dd}, J=3.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1H) (Note: N-H not observed); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ 181.3, 180.8, 151.7, $147.9,138.8,138.5,133.1,132.0,130.7,130.3,129.7,127.6,125.3,124.8,123.8,123.0$, 122.7, 116.0, 114.4; HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} 299.0820$, found 299.0818 .

References:

 J. Saliba and G. D. Smith, Tetrahedron 1999, 55, 13513.${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 8-bromophenanthridine-7,10-dione (5)

5

RKN-246

HRMS of 8-bromophenanthridine-7,10-dione (5)

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 8-(2-chlorophenyl)phenanthridine-7,10-dione (7)

7

$\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad$ ppr

BRUKER MAXIS HRMS REPORT
School of Chemistry University of Hyderabad

RKN-N-PC

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(4-methylbenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)dione (9b)

RKN-N-p-tolyl calothrixin

BRUKER MAXIS HRMS REPORT
 School of Chemistry University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 - (4 - m e t h o x y b e n z y l) - 7 H - i n d o l o [3 , 2 - j] p h e n a n t h r i d i n e - 7 , 1 3 (1 2 H) - ~}$ dione (9c)

$\stackrel{\sim}{\sim}$
RKN-N-PMB-calothrixin

RKN-N-PMB-calothrixin

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(4-chlorobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)dione (9d)

RKN-N-4- Cl-Ph-Calathrinin

BRUKER MAXIS HRMS REPORT
School of Chemistry University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(4-fluorobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)dione (9e)

RKN- 4 FC

RKN- 4 FC

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

RKN-N-3,5-DiOMe-Ph-calothrixin

HRMS of 12-(3,4-dimethoxybenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)-dione (9f)

BRUKER MAXIS HRMS REPORT
 School of Chemistry University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(2,4-dichlorobenzyl)-7H-indolo[3,2-jlphenanthridine-7,13(12H)dione (9g)

RKN-DCC

OT

$=$| LEO τ |
| :--- |
| $000^{\circ} \tau$ |

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

[^0]

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(2-bromobenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)dione (9i)

ذ

RKN- 2 BC

BRUKER MAXIS HRMS REPORT
 School of Chemistry
 University of Hyderabad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{7 H}$-indolo[3,2-j]phenanthridine-7,13(12H)-dione (2)

BRUKER MAXIS HRMS REPORT
 School of Chemistry University of Hyderabad

[^0]: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 12-(3-methoxybenzyl)-7H-indolo[3,2-j]phenanthridine-7,13(12H)dione (9h)

