# **Electronic Supplementary Information**

# Dendritic AIE-active luminogens with a POSS core: synthesis, characterization, and application as chemosensors

Kai Xiang,<sup>ab</sup> Lijuan He,<sup>ab</sup> Hongxia Yang,<sup>c</sup> Yanmin Li,<sup>c</sup> Caihong Xu\*<sup>a</sup>

and Shuhong Li \*c

<sup>a</sup> Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China E-mail: caihong@iccas.ac.cn.

<sup>b</sup> University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

<sup>c</sup> School of Science, Beijing Technology and Business University, Beijing 100037, P.

R. China E-mail: lish@th.btbu.edu.cn.

## 1. Preparation of Compound 1 and 2.

#### **Preparation of compound 2**



Scheme S1. Synthtic route to compound 2. PTSA = *p*-toluenesulfonic acid.

### **Preparation of compound 1**



To a THF (40 mL) solution S4 (1.65 g, 4 mmol, 1.0 eq.) was added n-BuLi (1.6 M in hexane, 5 mL, 8 mmol, 2 eq.) at -78 °C. After being stirred for 8 h at -78 °C, chlorodimethylsilane (0.87 mL, 8 mmol, 2 eq) was then injected slowly to the solution at 78°C. The obtained solution was warmed gradually to room temperature and stirred overnight. The reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub> (15 mL). The organic layer was separated and aqueous layer was extracted with

petroleum ether (100 mL x 2). The combined organic layer was washed with brine (15 mL), dried over MgSO<sub>4</sub> and concentrated under vacuum to get residue. The residue was purified by silica gel column chromatography using hexane as eluent to give 1.40 g (89.7%) of compound **1** as a white solid. **m. p.** 115-116 °C. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 7.24 (d, 1H, Ar-H), 7.13-7.05 (m, 10H, Ar-H), 7.05-6.97 (m, 8H, Ar-H), 4.34 (quint, 1H), 0.28 (d, 6H, CH<sub>3</sub>). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 144.5, 143.7, 143.6, 141.1, 140.8, 135.1, 133.3, 131.3, 131.3, 130.7, 127.7, 127.6, 126.4, 126.4, -3.8. **IR** (KBr),  $\upsilon$  (cm<sup>-1</sup>): 3058, 2959, 2121, 1599, 1491, 1441, 1388, 1254 (Si-CH<sub>3</sub> bending), 1102 (Si-Ph stretching), 884 (Si-CH<sub>3</sub> stretching), 759, 700. **HRMS (MALDI-TOF)**: [M]<sup>+</sup>= 390.18013 (calcd for C<sub>28</sub>H<sub>26</sub>Si, 390.17983).





Figure S1. DSC curves of 1, 2, POSS2, POSS4 under  $N_2$  at a heating rate of 10 °C/min.

3. <sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>SiNMR Spectra of Synthetic Compounds.















POSS4 <sup>1</sup>H

 $\begin{array}{c} 7.26\\ 7.10\\ 7.10\\ 7.05\\ 7.05\\ 6.94\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\ 6.22\\$ 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

0.18 0.16



