Supplementary Information for

Size-dependent ligand exchange of colloidal CdSe nanocrystals with $S^{2\text{-}}$ Ions

Limin Liu,^{a,b} Xianfeng Zhang,^a Li Ji,^b Hanwen Li,^a Huijuan Yu,^a Fangjie Xu,^b Jianhua Hu,^a Dong Yang^{*a} and Angang Dong^{*b}

^aState Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China. ^bCollaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai 200433, China.

*To whom correspondence should be addressed: <u>yangdong@fudan.edu.cn</u> (Y.D.); <u>agdong@fudan.edu.cn</u> (A.D.)

Table of Contents

Fig. S1 XRD patterns of individual CdSe NC samples before and after $(NH_4)_2S$
treatment
Fig. S2 FTIR spectra of different-sized CdSe NCs before and after (NH ₄) ₂ S treatment
Fig. S3 Size distribution histograms of different-sized CdSe NCs before and after
ligand exchange with (NH ₄) ₂ SS5
Fig. 4 PL decay dynamics of different-sized CdSe NCs before and after ligand
exchange with (NH ₄) ₂ SS6
Fig. S5 UV-Vis absorption spectra and PL spectra of different-sized CdSe NCs before
and after K ₂ S treatmentS7
Fig. S6 Representative EDS spectra of 3.1 nm CdSe NCs before and after (NH ₄) ₂ S
treatment and elemental mappings of S ²⁻ -treated CdSe NCsS8
Fig. S7 Plots of atomic percentages of S_{NC} and Se as a function of the diameters of
K ₂ S-treated CdSe NCs
Fig. S8 Calculation of the thickness of CdS shells
Table S1 PL QY of CdSe NCs before and after ligand exchange with K2S
Additional References

Fig. S1 XRD patterns of individual CdSe NC samples before (black curves) and after (red curves) $(NH_4)_2S$ treatment: (a) 7.7 nm, (b) 4.3 nm, (c) 3.1 nm, (d) 2.1 nm. The XRD stick patterns of bulk CdSe and CdS phases are provided for comparison.

Fig. S2 FTIR spectra of different-sized CdSe NCs before (black curves) and after (red curves) (NH₄)₂S treatment: (a) 7.7 nm, (b) 4.3 nm, (c) 3.1 nm, (d) 2.1 nm.

Fig. S3 Size distribution histograms of different-sized CdSe NCs before (left column) and after (right column) ligand exchange with $(NH_4)_2S$: (a) 7.7 nm, (b) 4.3 nm, (c) 3.1 nm, (d) 2.1 nm.

Fig. S4 PL decay dynamics of different-sized CdSe NCs before (black curves) and after (red curves) ligand exchange with (NH₄)₂S: (a) 7.7 nm, (b) 4.3 nm, (c) 3.1 nm, (d) 2.1 nm. The untreated CdSe NCs are dispersed in hexane, while the S²⁻-treated NCs are dispersed in FA for measurements.

Fig. S5 UV-Vis absorption spectra (solid curves) and PL spectra (dashed curves) of different-sized CdSe NCs before (black curves) and after (red curves) K_2S treatment: (a) 7.7 nm, (b) 4.3 nm, (c) 3.1 nm, (d) 2.1 nm. The insets show the corresponding luminescent photographs of NC dispersions before (left) and after (right) K_2S treatment upon illumination with a UV lamp. The untreated NCs are dispersed in hexane, while the S²⁻-treated NCs are dispersed in FA with the same concentration.

Fig. S6 Representative EDS spectra of 3.1 nm CdSe NCs before (a) and after (b) $(NH_4)_2S$ treatment, respectively. The Si signal in (b) is due to the use of the Si wafer substrate. (c) Representative SEM image and the corresponding elemental mappings (d-f) of S²⁻-treated CdSe NCs, showing the uniform distribution of S upon ligand exchange.

Fig. S7 Plots of atomic percentages of S_{NC} and Se as a function of NC diameters upon K_2S treatment.

Fig. S8 Cross-sectional view of CdSe/CdS core-shell NCs.

The CdS shell thickness can be roughly calculated by comparing the volume of CdSe core (with radius *r*) to that of core-shell NCs (with radius *R*).¹ The molar ratio of Se/(Se + S_{NC}) in core-shell NCs = the volume of the CdSe core/the volume of the CdSe core and the volume of the CdS shell = r^3/R^3 . Take 3.1 nm CdSe NCs as an example, the molar ratio of Se/(Se + S_{NC}) = 28.56/(28.56 + 17.24) = $r^3/1.55^3$; *r* = 1.32 nm. Therefore, the CdS shell thickness is determined to be *R*-*r* = 1.55 - 1.32 = 0.23 nm.

	PL QY (%)	
NC size (nm)	Before treatment	After treatment
7.7	0.7	0.2
4.3	1.2	0.7
3.1	1.9	3.3
2.1	1.6	26.1

Table S1 PL QY of CdSe NCs before and after K_2S treatment

Additional References:

Y. Liu, F. Wang, J. Hoy, V. L. Wayman, L. K. Steinberg, R. A. Loomis, W. E. Buhro, J. Am. Chem. Soc., 2012, 134, 18797.