Supporting Information

Complex 1			
Dy(1) - O(1)	2.242(3)	Dy(1)–O(3)	2.250(3)
Dy(1)–O(7)	2.427(4)	Dy(1)–O(8)	2.429(4)
Dy(1) - O(10)	2.449(3)	Dy(1) - O(13)	2.460(4)
Dy(1) - O(5)	2.503(4)	Dy(1) - O(2)	2.606(3)
Dy(1) - O(11)	2.690(4)	Dy(1)–O(4)	2.804(3)
O(1)-Dy(1)-O(3)	88.73(12)	O(1)-Dy(1)-O(7)	103.32(13)
O(3)-Dy(1)-O(7)	114.57(12)	O(1)-Dy(1)-O(8)	143.27(14)
O(3)-Dy(1)-O(8)	81.65(12)	O(7)-Dy(1)-O(8)	112.95(14)
O(1)-Dy(1)-O(10)	138.24(12)	O(3)-Dy(1)-O(10)	130.71(12)
O(7)-Dy(1)-O(10)	75.05(13)	O(8)-Dy(1)-O(10)	52.53(12)
O(1)-Dy(1)-O(13)	79.43(14)	O(3)-Dy(1)-O(13)	114.97(13)
O(7)-Dy(1)-O(13)	130.43(13)	O(8)-Dy(1)-O(13)	72.95(14)
O(10)-Dy(1)-O(13)	71.94(12)	O(1)- $Dy(1)$ - $O(5)$	137.98(14)
Complex 2			
Dy(1)–O(5)	2.253(13)	Dy(1)–O(3)	2.287(13)
Dy(1)-O(1)	2.345(13)	Dy(1)–O(15)	2.516(13)
Dy(1)–O(11)	2.514(13)	Dy(1)–O(14)	2.553(15)
Dy(1)–O(12)	2.547(16)	Dy(1)–O(17)	2.609(17)
Dy(1)–O(9)	2.616(16)	Dy(2)–O(4)	2.277(14)
Dy(2)–O(2)	2.315(13)	Dy(2)–O(7)	2.341(15)
Dy(2)–O(18)	2.427(14)	Dy(2)–O(21)	2.535(12)
Dy(2)–O(24)	2.544(14)	Dy(2)–O(20)	2.535(12)
Dy(2)–O(26)	2.572(15)	Dy(2)–O(23)	2.594(14)
O(5)-Dy(1)-O(1)	84.6(5)	O(3)-Dy(1)-O(1)	83.9(5)
O(5)-Dy(1)-O(15)	153.1(5)	O(3)- $Dy(1)$ - $O(15)$	85.4(5)
O(1)- $Dy(1)$ - $O(15)$	119.7(5)	O(5)-Dy(1)-O(11)	122.0(5)
O(3)- $Dy(1)$ - $O(11)$	142.8(5)	O(1)- $Dy(1)$ - $O(11)$	75.8(5)
O(15)-Dy(1)-O(11)	78.3(5)	O(5)-Dy(1)-O(14)	80.1(5)
O(4)- $Dy(2)$ - $O(2)$	83.6(5)	O(4)- $Dy(2)$ - $O(7)$	84.5(6)
O(2)-Dy(2)-O(7)	87.2(6)	O(4)-Dy(2)-O(18)	120.6(5)
O(2)-Dy(2)-O(18)	85.7(6)	O(7)-Dy(2)-O(18)	152.8(5)
O(4)-Dy(2)-O(21)	79.4(5)	O(2)-Dy(2)-O(21)	146.5(5)
O(7)-Dy(2)-O(21)	119.3(5)	O(18)-Dy(2)-O(21)	78.5(5)

Table S1 Selected bond length Å and angles (°) for complexes 1 and 2 $\,$

Figure S1 Thermogravimetric curve for complexes 1 (left) and 2(right).

Figure S2 X-ray powder diffraction patterns of simulated and experimental for 1(left) and 2

(right).

Figure S3 Terminal coordination modes of 1. (All hydrogen atoms are omitted for clarity)

Figure S4 Terminal coordination modes of 2. (All hydrogen atoms are omitted for clarity)

Figure S5 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility of **1** at 0 Oe in the frequency range 1–1000 Hz at 2–7 K.

Figure S6 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac

Figure S7 Frequency dependence of out-of-phase (χ') ac susceptibility of complex 1 under 2000 Oe in the temperature range 2–6 K.