Supporting Information

Isocyanide Substitution Reactions at the Trans Labile Sites of an Iron(II) N-Heterocyclic Carbene Complex

Stefan Haslinger,^a Anja C. Lindhorst,^a Jens W. Kück,^a Mirza Cokoja,^b Alexander Pöthig,^c and Fritz E. Kühn^a*

- [a] Chair of Inorganic Chemistry/Molecular Catalysis, Technische Universität München (TUM), Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München, Germany. Tel: (+49) 89 289 13096. Fax: (+)49 89 289 13473. E-mail: fritz.kuehn@ch.tum.de
- [b] Chair of Inorganic and Organometallic Chemistry, Technische Universität München (TUM), Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München, Germany.
- [c] Catalysis Research Center, Technische Universität München (TUM), Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München, Germany.

Content

1.	NMR spectra of 2b	S2
2.	NMR spectra of 3a	S4
3.	NMR spectra of 3b	S6
4.	NMR spectra of 4a	
5.	NMR spectra of 4b	S10
6.	NMR spectra of 5a	S12
7.	NMR spectra of 5b	S14
8.	Identification of disubstituted intermediate 2c	S16

1. NMR spectra of 2b

Figure S1. Structure of compound 2b.

Figure S2. ¹H NMR of 2b in MeCN- d_3 at 400.13 MHz.

Figure S3. ¹³C{¹H} NMR of **2b** in MeCN-*d*₃ at 125.83 MHz.

2. NMR spectra of 3a

Figure S4. Structure of compound 3a.

Figure S5. ¹H NMR of 3a in MeCN- d_3 at 400.13 MHz.

Figure S6. ¹³C{¹H} NMR of **3a** in MeCN-*d*₃ at 125.83 MHz.

3. NMR spectra of 3b

Figure S7. Structure of compound 3b.

Figure S8. ¹H NMR of **3b** in MeCN-*d*₃ at 400.13 MHz.

Figure S9. ¹³C{¹H} NMR of **3b** in MeCN-*d*₃ at 125.83 MHz.

4. NMR spectra of 4a

Figure S10. Structure of compound 4a.

Figure S11. ¹H NMR of 4a in MeCN- d_3 at 400.13 MHz.

Figure S12. ¹³C{¹H} NMR of **4a** in MeCN-*d*₃ at 125.83 MHz.

5. NMR spectra of 4b

Figure S13. Structure of compound 4b.

Figure S14. ¹H NMR of 4b in MeCN- d_3 at 400.13 MHz.

Figure S15. ¹³C{¹H} NMR of **4b** in MeCN-*d*₃ at 125.83 MHz.

6. NMR spectra of 5a

Figure S17. ¹H NMR of **5a** in MeCN-*d*₃ at 400.13 MHz.

Figure S18. ¹³C{¹H} NMR of **5a** in MeCN-*d*₃ at 125.83 MHz.

7. NMR spectra of 5b

Figure S20. ¹H NMR of **5b** in MeCN-*d*₃ at 400.13 MHz.

Figure S21. ¹³C{¹H} NMR of **5b** in MeCN-*d*₃ at 125.83 MHz.

8. Identification of disubstituted intermediate 2c

Figure S22. ¹H NMR after 40 min of the time-dependent monitoring of the reaction of **1** with 5 equiv. CN/Bu. At this point the disubstituted intermediate **2c** has reached its peak amount during the reaction. The peaks marked with an X are assigned to **2c**. The two doublet signals at 6.61 ppm and 6.37 ppm are caused by the CH₂ bridge of the NCCN ligand (doublet of doublet due to loss of symmetry).