ELECTRONIC SUPPLEMENTARY INFORMATION

for

Protonation and axial ligation intervened fluorescent turn-off sensing of picric acid in freebase and tin(IV) porphyrins

Rahul Soman, Subramaniam Sujatha and Chellaiah Arunkumar*

Bioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, India – 673 601.

E-mail: arunkumarc@nitc.ac.in

Contents

Fig. S1 (a) Fluorescence quenching of **6** (1 x 10⁻⁸ M in CHCl₃) upon incremental addition of PA (1.50 x 10⁻⁶ M in CHCl₃) (λ_{exc} = 426 nm); (b) Stern–Volmer plots for **6–9** against different concentrations of PA.

Fig. S2 Fluorescence quenching spectra of freebase porphyrins, (a) 1; (b) 3; (c) 4 and (d) 5 (~ 1 x 10^{-8} M in CHCl₃) upon incremental addition of PA (in CHCl₃) (λ_{exc} = 426 nm).

Fig. S3 Fluorescence quenching spectra of tin(IV) porphyrins, (a) 7; (b) 8 and (c) 9 (~ 1 x 10^{-8} M in CHCl₃) upon incremental addition of PA (in CHCl₃) (λ_{exc} = 426 nm).

Fig. S4 Fluorescence decay curves of freebase, (a) 1, (b) 2 and (c) 3 observed at 650 nm; tin(IV) porphyrins, (d) 6, (e) 7 and (f) 8 observed at 600 nm along with IRF measured (CHCl₃) in the presence and absence of PA. (λ_{exc} = 460 nm).

Fig. S5 (a) UV-visible spectra of (a) 1 with PA; (b) 2 with PA; (c) 3 with PA; (d) 4 with PA; and (e) 5 with PA.

Fig. S6 ORTEP diagram of $5^{2+} \cdot 2PA^{-}$ (a) top view, (b) side on view, (c) mean plane deviation of 24-atoms and (d) hydrogen bonding interactions between 2,4,6-trinitrophenolate and imino hydrogens (atoms involved in H-bonding interactions were represented as ball and sticks).

Fig. S7 ORTEP diagrams with labelling of atoms (hydrogens were omitted for clarity) of (a) 3.4-NP, (b) 6.2,4-DNP and (c) 6.PA.

Fig. S8 ¹H NMR spectra of **1** (a) without PA, (b) with 1 equiv. of PA and (c) with 2 equiv. of PA in CDCl₃ at 298 K.

Fig. S9 ¹H NMR spectra of **6** (a) without PA, (b) with 1 equiv. of PA and (c) with 2 equiv. of PA in CDCl₃ at 298 K.

Fig. S10 Relative percentage contribution of various intermolecular interactions in 3.4-NP, $5^{2+}.2PA^{-}$, 6.PA and 6.2,4-DNP based on Hirshfeld surface analysis.

Table S1. Photophysical data of the porphyrins, 1–9 in CHCl₃ at 298 K.

Table S2. Quenching efficiencies and K_{SV} values of porphyrins.

Table S3. Fluorescence lifetime of porphyrins in the presence and absence of PA.

Table S4. Crystallographic data of porphyrins, 3·4-NP, 5²⁺·2PA⁻, 6·PA and 6·2,4-DNP.

Fig. S1 (a) Fluorescence quenching of **6** (1 x 10⁻⁸ M in CHCl₃) upon incremental addition of PA (1.50 x 10⁻⁶ M in CHCl₃) (λ_{exc} = 426 nm); (b) Stern–Volmer plots for **6–9** against different concentrations of PA.

Fig. S2 Fluorescence quenching spectra of freebase porphyrins, (a) **1**; (b) **3**; (c) **4** and (d) **5** (~ 1 x 10^{-8} M in CHCl₃) upon incremental addition of PA (in CHCl₃) ($\lambda_{exc} = 426$ nm).

Fig. S3 Fluorescence quenching spectra of tin(IV) porphyrins, (a) 7; (b) 8 and (c) 9 (~ 1 x 10^{-8} M in CHCl₃) upon incremental addition of PA (in CHCl₃) (λ_{exc} = 426 nm).

Fig. S4 Fluorescence decay curves of freebase, (a) 1, (b) 2 and (c) 3 observed at 650 nm; tin(IV) porphyrins, (d) 6, (e) 7 and (f) 8 observed at 600 nm along with IRF measured (CHCl₃) in the presence and absence of PA. (λ_{exc} = 460 nm).

Fig. S5 (a) UV-visible spectra of (a) 1 with PA; (b) 2 with PA; (c) 3 with PA; (d) 4 with PA; and (e) 5 with PA.

Fig. S6 ORTEP diagram of $5^{2+}\cdot 2PA^{-}$ (a) top view, (b) side on view, (c) mean plane deviation of 24-atoms and (d) hydrogen bonding interactions between 2,4,6-trinitrophenolate and imino hydrogens (atoms involved in H-bonding interactions were represented as ball and sticks).

Fig. S7 ORTEP diagrams with labelling of atoms (hydrogens were omitted for clarity) of (a) **3**·4-NP, (b) **6**·2,4-DNP and (c) **6**·PA.

Fig. S8 ¹H NMR spectra of **1** (a) without PA, (b) with 1 equiv. of PA and (c) with 2 equiv. of PA in CDCl₃ at 298 K.

Fig. S9 ¹H NMR spectra of **6** (a) without PA, (b) with 1 equiv. of PA and (c) with 2 equiv. of PA in CDCl₃ at 298 K.

Fig. S10 Relative percentage contribution of various intermolecular interactions in 3.4-NP, $5^{2+}.2PA^{-}$, 6.PA and 6.2,4-DNP based on Hirshfeld surface analysis.

Compound	Absorption maxima	Fluorescence emission	Quantum Yield
	λ_{max} , nm (log ε)	maxima (λ _{max} , nm) ^a	$(\Phi) (S_1 - S_0)$
1	419 (6.34), 514 (4.97), 548 (4.56), 591 (4.46), 648	439, 651, 716	0.11 ^b
	(4.33)		0.11
2	420 (6.29), 515 (4.91), 551 (4.62), 593 (4.38), 651	464, 653, 719	0.122
	(4.38)		
3	417 (6.12), 514 (4.88), 549 (4.50), 591 (4.33), 646	650, 716	0.057°
	(4.12)		
4	424 (6.18), 513 (5.10), 551 (4.68), 595 (4.78), 650	465, 656, 722	0.120
	(4.19)		
5	423 (6.09), 514 (5.03), 548 (4.49), 589 (4.60), 658	467, 656, 721	0.125
	(4.19)		
6	426 (6.11), 560 (4.72), 598 (4.43)	433, 603, 654	0.033
7	429 (6.17), 563 (4.97), 603 (4.90)	436, 608, 659	0.052
8	427 (5.97), 561 (4.89), 600 (4.76) ^d	462, 605, 657	0.017 ^c
9	432 (5.95), 565 (4.54), 606 (4.50)	435, 607, 657	0.046

Table S1. Photophysical data of the porphyrins, 1–9 in CHCl₃ at 298 K.

^aFluorescence spectra of porphyrins were obtained as a function of λ_{ex} in the Soret band region. ^bTaken from the ref. O. Ohno, Y. Kaizu, H. Kobayashi, J. Chem. Phys., 1985, 82, 1779–1787. ^cTaken from the ref. R. Soman, D. Raghav, S. Sujatha, K. Rathinasamy, C. Arunkumar, *RSC Advances*, 2015, 5, 61103-61117. ^dTHF as solvent.

Porphyrin	NACs	$K_{SV}(\mathbf{M}^{-1})$	Quenching Efficiency (%)
1	PA	9.35 x 10 ⁶	86
2	PA	3.90 x 10 ⁷	90
3	PA	2.92 x 10 ⁴	83
4	PA	1.93 x 10 ⁶	85
5	PA	1.32 x 10 ⁷	85
6	PA	6.63 x 10 ³	65
7	PA	2.24 x 10 ⁴	70
8	PA	7.80 x 10 ²	34
9	PA	9.59 x 10 ³	58
H ₂ OMP ^a	TNT	3.24 x 10 ²	-
H ₂ OMP ^a	DNT	2.26 x 10 ²	-
CdTPP- doped	TNT	-	56
Hg decorated porphyrin ^b	PA	1.6 x 10 ⁷	94 ^d
Hg decorated porphyrin ^b	DNP	4.16 x 10 ⁴	71°

Table S2. Quenching efficiencies and K_{SV} values of porphyrins.

^aTaken from ref. 17a; ^bTaken from ref. 17b; ^cTaken from ref. 17c ^dLOD is 18 ppb; ^eLOD is 140 ppb Table S3. Fluorescence lifetime of porphyrins in the presence and absence of PA.

Compound	Fluorescence lifetime, τ (ns) in absence of PA	Fluorescence lifetime, τ (ns) in presence of PA
1	9.53	3.66
2	9.25	3.55
3	10.16	4.11
6	1.58	1.57
7	1.40	1.40
8	1.80	1.74

	3 ·4-NP	5 ²⁺ ·2PA [−]	6 ·PA	6·2,4-DNP
Empirical formula	C ₆₄ H ₅₀ N ₆ O ₁₄	C ₇₂ H ₆₈ N ₁₀ O ₁₈	C57H33Cl3N10O14Sn	$C_{56}H_{34}N_8O_{10}Sn$
fw	1127.10	1361.36	1306.97	1097.60
CCDC no.	980779	1058018	974216	1058017
Colour	black	purple	purple	purple
Crystal system	monoclinic	orthorhombic	monoclinic	triclinic
Space group	C2/c	P 2 ₁ 2 ₁ 2 ₁	C2/c	P -1
a, Å	32.538(2)	17.9987(14)	22.531	10.8117(3)
b, Å	7.1831(4)	18.3601(12)	9.691	11.0391(8)
c, Å	23.8130(18)	20.6419(16)	26.753	11.7580(5)
α , (deg)	90.00	90	90.00	102.915(2)
β, (deg)	99.118(5)	90	113.96	111.599(2)
γ, (deg)	90.00	90	90.00	105.250(2)
Volume (Å ³)	5495.3(7)	6821.3(9)	5338.1	1175.85(11)
Ζ	4	4	4	1
D_{calcd} (mg/m ³)	1.362	1.326	1.626	1.550
λ, Å	0.71073	0.71073	0.71073	0.71073
T (K)	296(2)	296(2)	296(2)	296(2)
No. of unique	6728	12012	4654	4102
reflections				
No. of parameters	390	1026	426	378
refined				
GOF on F ²	1.058	1.024	0.949	1.061
$R_1^{[a]}$	0.0687	0.0690	0.0354	0.0284
wR2 ^[b]	0.1884	0.1786	0.0836	0.0749

Table S4. Crystallographic data of porphyrins, 3·4-NP, 5²⁺·2PA⁻, 6·PA and 6·2,4-DNP.

 $[a] \tilde{R}_1 = \Sigma ||F_0| - |Fc|| / \Sigma |F_0|; I_0 > 2\sigma (I_0). [b] wR_2 = [\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}.$