Electronic Supporting Information for

High selectivity and sensitivity fluorescent sensing melamine based on the combination of fluorescent chemosensor with molecularly imprinted polymers

Kejin Sun^a, Qiliang Deng^a, *, Ting Guo, Rina Su, Yuchen Gu, Shuo Wang* Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457,

China

^aThese authors contributed equally to this work

* Corresponding author Shuo Wang, Tel: (+86 22) 60912493 Fax: (+86 22) 60912489

E-mail:S.wang@tust.edu.cn; yhdql@tust.edu.cn

^aEqually contributed to this work.

The adsorption capacity Q $(\mu mol/g)$ was calculated according to the following formula:

$$Q = \frac{(C_0 - C_e)V}{m} \tag{1}$$

Where, C_0 (mmol/L) and C_e (mmol/L) were the initial and final concentrations, respectively, V (mL) was the total volume of the solution, m (mg) was the mass of MIPs or NIPs, and Q (µmol/g) was the mass of target adsorbed through per gram of polymer.

The Scatchard analysis was calculated according to the following formula:

$$\frac{Q}{C_{\rm e}} = \frac{Q_{\rm max} - Q_{\rm e}}{K_{\rm d}} = -\frac{1}{K_{\rm d}}Q_{\rm e} + \frac{Q_{\rm max}}{K_{\rm d}}$$
(2)

Where Q and Q_{max} (µmol/g) were equilibrium and maximum adsorption capacities respectively, C_e (mmol/L) was the free concentration of analyte in solution, and K_d was the dissociation constant. Figure S1. ¹H NMR, ¹³C NMR and LC-MS spectroscopy of RBH.

RBH: ¹H NMR (400 MHz, CDCl₃-D₁) δ (ppm): 7.925-7.946 (1H, m, Ar-H), 7.438– 7.458 (2H, m, Ar-H), 7.095-7.116 (1H, m, Ar-H), 6.417-6.471 (4H, m, Xanthene-H), 6.278-6.306 (2H, m, Xanthene-H), 3.613 (2H, s, NH₂), 3.314-3.367 (8H, m, NCH₂CH₃), 1.149-1.184 (12H, t, NCH₂CH₃). ¹³C NMR (400 MHz, CDCl₃-D₁) δ (ppm): 166.17, 153.86, 151.57, 148.91, 132.52, 130.03, 128.13, 128.09, 123.84, 122.99, 108.07, 104.58, 98.01, 65.95, 44.38, 12.61. LC-MS [M+H]⁺ *m/z* C₂₈H₃₂N₄O₂ calcd. 456.58, found [M+H⁺] 457.41.

¹H NMR spectroscopy of RBH.

¹³C NMR spectroscopy of RBH.

LC-MS spectrometry of RBH

Figure S2. ¹H NMR, ¹³C NMR and LC-MS spectroscopy of RB1.

RB1:¹H NMR (400 MHz, CDCl₃-D₁) δ (ppm): 9.430-9.449 (1H, s, -CHO), 8.028-8.047 (1H, m, N=C-H), 7.875-7.988 (1H, t, Ar-H), 7.419-7,564 (1H, m, Ar-H), 7.341-7.398 (1H, m, Ar-H), 7.022-7.103 (1H, m, Ar-H), 6.426-6.462 (2H, m, Xanthene-H), 6.396-6.402 (2H, d, Xanthene-H), 6.232-6.261 (1H, m, Xanthene-H), 6.144-6.172 (1H, m, Xanthene-H), 3.325-3.337 (8H, m, NCH₂CH₃), 1.170-1.206 (12H, t, NCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃-D₁) δ (ppm): 192.67, 166.00, 152.98, 152.63, 149.29, 141.20, 134.99, 128.63, 127.52, 126.55, 124.08, 108.22, 103.76, 98.12, 66.06, 44.35, 12.59. LC-MS [M+H]+ *m/z* C₃₀H₃₂N₄O₃ calcd. 496.60, found [M+H⁺] 497.42.

¹H NMR spectroscopy of RB1.

¹³C NMR spectroscopy of RB1.

LC-MS spectrometry of RB1