## **Supporting information**

Gui-Xian Song<sup>a,b</sup>, Qing Tang<sup>a</sup>, Ying Huang<sup>\*,a,b</sup>, Ruibing Wang<sup>c</sup>, Yun-Yun Xi<sup>b</sup>, Xin-Long Ni<sup>b</sup>, Zhu Tao<sup>b</sup>, Sai-Feng Xue<sup>b</sup>, Jian-Xin Zhang<sup>\*,d</sup>

- <sup>a</sup> The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
- <sup>b</sup> Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
- <sup>c</sup> State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR
- <sup>d</sup> Key Laboratory of Chemistry for Natural Products of Guizhou Province, Guiyang 550002, China



Fig.1S Fluorescence spectra of ThT( $C_{ThT}=2\times10^{-5}$  mol L<sup>-1</sup>) with Q[8] (0, 0.2, 0.5, 0.8, 1.0, 2.0, 4.0, and 5.0 equiv.) in aquous

solution ( $\lambda_{ex}$ =406 nm, slit:10 nm/10 nm)



**Fig.2S** Fluorescence spectra of Q[8]-ThT( $C_{Q[8]}=2\times10^{-5}$  mol L<sup>-1</sup>,  $C_{ThT}=2\times10^{-5}$  mol L<sup>-1</sup>) with different pH ( $\lambda_{ex}=406$  nm, slit:10 nm/10 nm)



Fig.3S <sup>1</sup>H NMR spectra (400 MHz, D<sub>2</sub>O) of ThT, DQ in the absence and in the presence of 1 equivalent of Q[8].

## **DOSY-NMR** experiments:

Both free PQ and DQ diffusion coefficients are around  $6.2 \times 10^{-10}$  m<sup>2</sup>/s with very narrow coefficient distribution (see the Fig.4S-a and Fig.4S-d for PQ and DQ DOSY spectra, respectively).

When 1 equivalent molar quantity of PQ or DQ was added into ThT-Q[8] system, the complexed PQ or DQ diffusion coefficient decreased to the range of **2.4 to 5.6**  $\times 10^{-10}$  m<sup>2</sup>/s with very broad diffusion coefficient value distribution, whereas the rest species (ThT-Q[8]) were centered around **2.4**×10<sup>-10</sup> m<sup>2</sup>/s. Therefore, PQ or DQ is likely shuttling rapidly in and out of the Q[8] cavity (where ThT is sitting in tightly due to its higher binding affinity with Q[8] than that of PQ or DQ based on ITC data) (see the Fig.4S-b and Fig.4S-e for PQ-ThT-Q[8] and DQ-ThT-Q[8] DOSY spectra, respectively)

When large excess of PQ or DQ was added into ThT-Q[8] system, the DQ diffusion coefficient moved to around **5.2**  $\times 10^{-10}$  m<sup>2</sup>/s and **4.8**  $\times 10^{-10}$  m<sup>2</sup>/s, respectively. Whereas the rest (ThT-Q[8]) were still centered around **2.4** $\times 10^{-10}$  m<sup>2</sup>/s, implying majority of PQ or DQ in this case is in the free form and only a portion of them is shuttling rapidly between free and complexed state (see the Fig.4S-c and Fig.4S-f for excess PQ or DQ with ThT-Q[8], respectively).

These collective evidence based on 2D DOSY-NMR spectra, as well as <sup>1</sup>H NMR spectra of these ternary systems presented in the main text and supporting information, suggest that these herbicides individually form ternary complex PQ(or DQ)-ThT-Q[8].





Fig. 4S DOSY NMR spectral changes for Q[8]-ThT-PQ (a-c) and Q[8]-ThT-DQ(d-f) system in D<sub>2</sub>O.



Fig. 5S a Stern-Volmer plot describing the PQ(A) and DQ(B) concentration dependence of the fluorescence intensity of the Q[8]-ThT complexes, a linearity is observed throughout the following range of PQ and DQ concentrations

| Table | 18  | Selectivity | studva |
|-------|-----|-------------|--------|
| rabic | 10. | Selectivity | Study  |

| Foreign species                                                                    | Tolerated interference/analyte ratio $(w/w)^b$ |
|------------------------------------------------------------------------------------|------------------------------------------------|
| K <sup>+</sup> , Mg <sup>2+</sup> , SO <sub>4</sub> <sup>2-</sup> ,Cl <sup>-</sup> | 60                                             |
| Na <sup>+</sup> , H <sub>2</sub> PO <sub>4</sub> -                                 | 80                                             |
| Cu <sup>2+</sup> , NH <sub>4</sub> <sup>+</sup>                                    | 30                                             |
| Ca <sup>2+</sup>                                                                   | 6                                              |
| Fe <sup>3+</sup>                                                                   | 10                                             |

<sup>a</sup>  $C_{ThT} = C_{Q[8]} = C_{herbicides} = 2 \times 10^{-5} \text{ mol } L^{-1} \text{ in aqueous solution at } 25.0 \text{ °C}.$ 

 $^{\rm b}$  Maximum concentration of interference causing a relative error of  ${<}5\%$  in analytical signal.

## Table 2S. Maximum concentration tolerated for other quaternary ammonium salt of herbicide to produce interference in PQ/DQ determination.

| Interference of PQ | Maximum allowed concentration (mol L-1) | Interference of DQ | Maximum allowed concentration (mol L <sup>-1</sup> ) |
|--------------------|-----------------------------------------|--------------------|------------------------------------------------------|
| DQ                 | $5 \times 10^{-7}$                      | PQ                 | $5 \times 10^{-7}$                                   |
| DF                 | $5 \times 10^{-7}$                      | DF                 | $5 \times 10^{-7}$                                   |

## Table 3S. Recovery of PQ and DQ in water samples.<sup>a</sup>

| Herbicides | Added       | Found       | This method               |         | HPLC                                   |         |
|------------|-------------|-------------|---------------------------|---------|----------------------------------------|---------|
|            | (×10-6 mol) | (×10-6 mol) | Recovery <sup>b</sup> (%) | RSD (%) | Recovery <sup><math>b</math></sup> (%) | RSD (%) |
| PQ         | 10          | 10.53       | 105.3                     | 3.89    | 92.6%                                  | 3.53    |
|            | 20          | 21.77       | 108.8                     | 4.01    | 91.5%                                  | 2.95    |
|            | 40          | 42.01       | 105.0                     | 3.75    | 92.2%                                  | 3.18    |
| DQ         | 10          | 10.61       | 106.1                     | 4.77    | 92.6%                                  | 2.98    |
|            | 20          | 21.63       | 108.2                     | 5.02    | 91.5%                                  | 3.53    |
|            | 40          | 41.91       | 104.8                     | 4.95    | 92.2%                                  | 3.61    |

<sup>*a*</sup> 2×10<sup>-5</sup> mol L<sup>-1</sup> Q[8], 2×10<sup>-5</sup> mol L<sup>-1</sup> ThT, in water at 25.0 °C. From the Huaxi river, Guizhou province, China. <sup>*b*</sup> Recoveries were means from triplicate determinations.

Table 4S. Recovery of PQ and DQ in cabbage samples.<sup>a</sup>

| Herbicides | Added       | Found       | This method                            |         | HPLC                      |         |
|------------|-------------|-------------|----------------------------------------|---------|---------------------------|---------|
|            | (×10-6 mol) | (×10-6 mol) | Recovery <sup><math>b</math></sup> (%) | RSD (%) | Recovery <sup>b</sup> (%) | RSD (%) |

| PQ | 10 | 10.72 | 107.2 | 4.13 | 92.3% | 3.22 |
|----|----|-------|-------|------|-------|------|
|    | 20 | 21.22 | 106.1 | 4.58 | 91.1% | 2.74 |
|    | 40 | 41.96 | 104.9 | 5.07 | 91.5% | 2.55 |
| DQ | 10 | 10.68 | 106.8 | 5.11 | 92.3% | 4.01 |
|    | 20 | 21.14 | 105.7 | 4.68 | 91.1% | 3.36 |
|    | 40 | 41.96 | 104.9 | 3.95 | 91.5% | 3.05 |

<sup>*a*</sup>  $2 \times 10^{-5}$  mol L<sup>-1</sup> Q[8],  $2 \times 10^{-5}$  mol L<sup>-1</sup> ThT, in water at 25.0 °C. From the Huaxi river, Guizhou province, China. <sup>*b*</sup> Recoveries corresponded to the average from triplicate determinations.