Supporting Information

Ligand-free reusable nano copper oxide-catalyzed synthesis of 3amino-1,4-diynes

Subhajit Mishra,^a Sougata Santra^b and Alakananda Hajra*,^a

^aDepartment of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India Tel./Fax: +913463 261526; E-mail: alakananda.hajra@visva-bharati.ac.in

^bUral Federal University, Chemical Engineering Institute, Yekaterinburg, 620002, Russian Federation

Page No.

1.	General Information	S2
2.	Typical Experimental Procedure	S2-S3
3.	Characterization Data of the Synthesized Products	S3-S7
4.	¹ H and ¹³ C NMR Spectra for the Synthesized Products	S8-S38

1. General Information:

¹H NMR spectra were determined on 400 MHz spectrometer as solutions in CDCl₃. Chemical shifts are expressed in parts per million (δ) and are referenced to tetramethylsilane (TMS) as internal standard and the signals were reported as s (singlet), d (doublet), t (triplet), dd (double doublet), m (multiplet) and coupling constants *J* were given in Hz. ¹³C NMR spectra were recorded at 100 MHz in CDCl₃. TLC was done on TLC Silica gel 60 F₂₅₄ coated on aluminium sheets (Merck). Silica gel (60-120 mesh) was used for column chromatography. Petroleum ether refers to the fraction boiling in the range of 60-80 °C unless otherwise mentioned. All solvents were dried and distilled before use. Solvents, reagents and chemicals were purchased from Aldrich and Merck. All reactions involving moisture sensitive reactants were executed using oven dried glassware.

2. General procedure for the synthesis of *N*,*N*-dimethyl-1,5diphenylpenta-1,4-diyn-3-amine (3a):

A mixture of N,N-dimethyl formamide dimethyl acetal (70 μ L, 0.5 mmol), and phenylacetylene (160 μ L, 1.5 mmol) was stirred in presence of CuO nano (Sigma-Aldrich, nanopowder, <50 nm particle size, 10 mol%) in 1,2-DCE (3 mL) under refluxed conditions for 10 h. After completion of the reaction (TLC), DCM (10 mL) was added to the reaction mixture. Then the insoluble CuO nanoparticles were filtered by Teflon membrane (PTFE, 0.2 mm pore size). The CuO nanoparticles was thoroughly washed with the DCM, dried and reused for the next cycle. Water was added to the filtrate and extracted with DCM (10 mL) followed by washing with brine (5 mL) and dried over Na₂SO₄. The crude residue was obtained after evaporation of the solvent in vacuum and purified by column chromatography on silica gel (60–120 mesh) using petroleum ether–ethyl acetate (9:1) as the eluent to afford pure **3a** as Yellow liquid.

3. General procedure for the synthesis of *N*,*N*-dimethyl-1,5-diphenylpenta-1,4-diyn-3-amine (3n):

A mixture of N,N-dimethyl formamide dimethyl acetal (70 μ L, 0.5 mmol), phenylacetylene (80 μ L, 0.75 mmol), and 4-ethynyltolune (95 μ L, 0.75 mmol) was stirred in presence of CuO nano (Sigma-Aldrich, nanopowder, <50 nm particle size, 10 mol%) in 1,2-DCE (3 mL) under refluxed conditions for 10 h. After completion of the reaction (TLC), DCM (10 mL) was added to the reaction mixture. Then the insoluble CuO nanoparticles were filtered by Teflon

membrane (PTFE, 0.2 mm pore size). The CuO nanoparticles was thoroughly washed with the DCM, dried and reused for the next cycle. Water was added to the filtrate and extracted with DCM (10 mL) followed by washing with brine (5 mL) and dried over Na_2SO_4 . The crude residue was obtained after evaporation of the solvent in vacuum and purified by column chromatography on silica gel (60-120 mesh) using petroleum ether–ethyl acetate (6:1) as the eluent to afford pure **3n** as Yellow liquid.

4. Characterization Data of the Synthesized Products:

N,*N*-Dimethyl-1,5-diphenylpenta-1,4-diyn-3-amine (3a): Yellow liquid (87%, 112 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.48 (m, 4H), 7.32-7.30 (m, 6H), 4.79 (s, 1H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 132.0, 128.5, 128.3, 122.6, 84.7, 83.5, 50.2, 41.5; Anal calcd for C₁₉H₁₇N: C, 87.99; H, 6.61; N, 5.40%; Found: C, 87.82; H, 6.70; N, 5.28%.

N,N-Dimethyl-1,5-di-*p*-tolylpenta-1,4-diyn-3-amine (3b): Yellow liquid (92%, 132 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.4 Hz, 4H), 7.12 (d, J = 8.0 Hz, 4H), 4.77 (s, 1H), 2.48 (s, 6H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.5, 131.8, 129.0, 119.6, 84.6, 83.0, 50.2, 41.4, 21.5; Anal calcd for C₂₁H₂₁N: C, 87.76; H, 7.36; N, 4.87%; Found: C, 87.66; H, 7.49; N, 4.72%.

N,*N*-Dimethyl-1,5-di-*m*-tolylpenta-1,4-diyn-3-amine (3c): Yellow liquid (90%, 129 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.30 (m, 4H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 2H), 4.78 (s, 1H), 2.49 (s, 6H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 132.5, 129.3, 129.0, 128.2, 122.4, 84.7, 83.3, 50.1, 41.4, 21.2; Anal calcd for C₂₁H₂₁N: C, 87.76; H, 7.36; N, 4.87 %; Found: C, 87.64; H, 7.46; N, 4.78%.

1,5-Bis(2-methoxyphenyl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3d): Yellow liquid (88%, 140 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 9.2 Hz, 2H), 7.22-7.17 (m, 2H), 6.82-6.77 (m, 4H), 4.79 (s, 1H), 3.78 (s, 6H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 133.8, 129.8, 120.4, 112.0, 110.8, 87.7, 80.8, 55.8, 50.5, 41.2. Anal calcd for C₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39%; Found: C, 78.85; H, 6.72; N, 4.27%.

1,5-Bis(4-methoxyphenyl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3e): Yellow liquid (90%, 143 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.4 Hz, 4H), 6.83 (d, *J* = 8.8 Hz, 4H), 4.74 (s, 1H), 3.79 (s, 6H), 2.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 133.4, 114.8, 113.9, 84.3, 82.4, 55.3, 50.2, 41.4; Anal calcd for C₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39%; Found: C, 78.82; H, 6.74; N, 4.30%.

1,5-Bis(4-bromophenyl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3f): Yellow solid (82%, 169 mg), m.p. 80-81 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.4 Hz, 4H), 7.34 (d, *J* = 8.4 Hz, 4H), 4.74 (s, 1H), 2.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 133.4, 131.6, 122.9, 121.5, 84.5, 83.8, 50.2, 41.5; Anal calcd for C₁₉H₁₅Br₂N: C, 54.71; H, 3.62; N, 3.36%; Found: C, 54.54; H, 3.73; N, 3.26%.

1,5-Bis(4-fluorophenyl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3g): Yellow liquid (91%, 134 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 4H), 7.02-6.97 (m, 4H), 4.76 (s, 1H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7 (*J*_{C-F} = 248 Hz), 133.9 (*J*_{C-F} = 9 Hz), 118.6 (*J*_{C-F} = 4 Hz), 115.6 (*J*_{C-F} = 22 Hz), 83.7, 83.0, 49.9, 41.3; Anal calcd for C₁₉H₁₅F₂N: C, 77.27; H, 5.12; N, 4.74%; Found: C, 77.13; H, 5.26; N, 4.63%.

1,5-Bis(3-fluorophenyl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3h): Yellow liquid (85%, 125 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.18 (m, 4H), 7.13-7.09 (m, 2H), 6.98-6.95 (m, 2H), 4.69 (s, 1H), 2.39 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4 ($J_{C-F} = 245$ Hz), 130.0 ($J_{C-F} = 9$ Hz), 127.9 ($J_{C-F} = 3$ Hz), 124.4 ($J_{C-F} = 10$ Hz), 118.8 ($J_{C-F} = 22$ Hz), 116.0 ($J_{C-F} = 21$ Hz), 84.4, 83.6 ($J_{C-F} = 2$ Hz), 50.1, 41.5; Anal calcd for C₁₉H₁₅F₂N: C, 77.27; H, 5.12; N, 4.74%; Found: C, 77.15; H, 5.22; N, 4.61%.

N,N-Dimethyl-1,5-di(thiophen-3-yl)penta-1,4-diyn-3-amine (3i): Yellow liquid (90%, 122 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.40 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.07-7.05 (m, 2H), 4.65 (s, 1H), 2.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 130.1, 129.3, 125.3, 121.6, 83.1, 79.7, 50.1, 41.5. Anal calcd for C₁₅H₁₃NS₂: C, 66.38; H, 4.83; N, 5.16%; Found: C, 66.22; H, 4.95; N, 5.08%.

N,*N*-Dimethylheptadeca-7,10-diyn-9-amine (**3**j): Yellow liquid (85%, 116 mg); ¹H NMR (400 MHz, CDCl₃): δ 2.30 (s, 6H), 2.23-2.18 (m, 4H), 1.54-1.46 (m, 4H), 1.39-1.35 (m, 4H), 1.30-1.25 (m, 8H), 0.89-0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 84.7, 74.9, 49.1, 41.1, 31.4, 28.8, 28.6, 22.6, 18.8, 14.1; Anal calcd for C₁₉H₃₃N: C, 82.84; H, 12.07; N, 5.08%; Found: C, 82.65; H, 12.17; N, 4.95%.

1,5-Di(cyclohex-1-en-1-yl)-*N*,*N*-dimethylpenta-1,4-diyn-3-amine (3k): Brown liquid (90%, 120 mg); ¹H NMR (400 MHz, CDCl₃): δ 6.11-6.09 (m, 2H), 4.52 (s, 1H), 2.33 (s, 6H), 2.12-2.05 (m, 8H), 1.61-1.53 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 135.2, 120.2, 86.1, 81.0, 49.8, 41.1, 29.3, 25.6, 22.3, 21.5; Anal calcd for C₁₉H₂₅N: C, 85.34; H, 9.42; N, 5.24%; Found: C, 85.23; H, 9.47; N, 5.15%.

1,5-Dicyclopropyl-*N*,*N***-dimethylpenta-1,4-diyn-3-amine** (**3I**): Yellow liquid (65%, 60 mg); ¹H NMR (400 MHz, CDCl₃): δ 4.21 (s, 1H), 2.27 (s, 6H), 1.26-1.23 (m, 2H), 0.76-0.74 (m, 4H), 0.73-0.69 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 87.7, 70.0, 49.1, 41.1, 8.3, -0.4; Anal calcd for C₁₃H₁₇N: C, 83.37; H, 9.15; N, 7.48%; Found: C, 83.21; H, 9.29; N, 7.34%.

N,N-Dimethyl-1,9-diphenylnona-3,6-diyn-5-amine (**3m**): Brown liquid (90%, 141 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.27 (m, 4H), 7.23-7.20 (m, 6H), 4.26 (s, 1H), 2.85 (t, *J* = 7.6 Hz, 4H), 2.53 (t, *J* = 7.6 Hz, 4H), 2.23 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 128.6, 128.4, 126.3, 83.9, 75.5, 49.1, 41.1, 35.2, 21.0; Anal calcd for C₂₃H₂₅N: C, 87.57; H, 7.99; N, 4.44%; Found: C, 87.35; H, 8.11; N, 4.32%.

N,*N*-Dimethyl-1-phenyl-5-(*p*-tolyl)penta-1,4-diyn-3-amine (3n): Yellow liquid (85%, 116 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.48 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.33-7.30 (m, 3H), 7.11 (d, *J* = 6.8 Hz, 2H), 4.76 (s, 1H), 2.47 (s, 6H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 132.0, 131.9, 129.1, 128.5, 128.3, 122.8, 119.6, 84.6, 84.5, 83.7, 82.9, 50.2, 41.5, 21.6; Anal calcd for C₂₀H₁₉N: C, 87.87; H, 7.01; N, 5.12%; Found: C, 87.69; H, 7.12; N, 5.01%.

N,N-Dimethyl-1-phenyl-5-(*m*-tolyl)penta-1,4-diyn-3-amine (30): Yellow liquid (88%, 120 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.48 (m, 2H), 7.32-7.29 (m, 5H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 4.77 (s, 1H), 2.48 (s, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 132.6, 132.0, 129.4, 129.0, 128.5, 128.3, 128.2, 122.7, 122.5, 84.8, 84.6, 83.7, 83.2, 50.2, 41.5, 21.3; Anal calcd for C₂₀H₁₉N: C, 87.87; H, 7.01; N, 5.12%; Found: C, 87.68; H, 7.15; N, 4.99%.

5. ¹H and ¹³C NMR Spectra for the Synthesized Products

1

