Phenothiazine-Based Bipolar Green-Emitters Containing Benzimidazole Units: Synthesis, Photophysical and Electroluminescent Properties

Govardhana Babu Bodedla,^a K. R. Justin Thomas,^{*,a} Sandeep Kumar,^a Jwo-Huei Jou^b and Chieh-Ju Li^b

^a Organic Materials Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247 667, India.

^b Department of Material Science and Engineering, National Tsing Hua University,

Hsinchu 30013, Taiwan.

Supporting Information

1	Fig. S1 Absorption spectra of 4a recorded in different solvents.						
2.	Fig. S2 Absorption spectra of 4b recorded in different solvents.	S2					
3 .	Fig. S3 Absorption spectra of 4c recorded in different solvents.	S3					
4 .	Fig. S4 Absorption spectra of 4d recorded in different solvents.	S3					
5 .	Fig. S5 Absorption spectra of the dyes recorded on thin film.	S4					
6.	Fig. S6 Emission spectra of 4a recorded in different solvents.	S4					
7.	Fig. S7 Emission spectra of 4c recorded in different solvents.	S5					
8 .	Fig. S8 Emission spectra of 4d recorded in different solvents.	S5					
9.	Fig. S9 Emission spectra of the dyes recorded on thin film.	S6					
10 .	Table S1 Absorption data for the dyes (4a-4d) recorded in different	S6					
	solvents with increasing solvent polarity						
11.	Fig. S10 Differential pulse voltammograms for the dyes (4a-4d)	S 7					
	recorded in dichloromethane.						
12.	Fig. S11 ¹ H NMR spectrum of 4a recorded in CDCl ₃ .	S 8					
13.	Fig. S12 ¹ H NMR (expanded) spectrum of 4a recorded in CDCl ₃ .	S 9					
14.	Fig. S13 ¹³ C NMR spectrum of 4a recorded in CDCl ₃ .	S10					
15.	Fig. S14 ¹ H NMR spectrum of 4b recorded in CDCl ₃ .	S11					
16	Fig. S15 ¹ H NMR (expanded) spectrum of 4b recorded in CDCl ₃ .	S12					
17.	Fig. S16 ¹³ C NMR spectrum of 4b recorded in CDCl ₃ .	S13					
18 .	Fig. S17 ¹ H NMR spectrum of 4c recorded in CDCl ₃ .	S14					
19	Fig. S18 ¹ H NMR (expanded) spectrum of 4c recorded in CDCl ₃ .	S15					
20 .	Fig. S19 ¹³ C NMR spectrum of 4c recorded in CDCl ₃ .	S16					

- **21**. **Fig. S20** ¹H NMR spectrum of **4d** recorded in $CDCl_3$. S17
- **22** Fig. S21 ¹H NMR (expanded) spectrum of 4d recorded in CDCl₃. S18
- **23**. **Fig. S22** ¹³C NMR spectrum of **4d** recorded in CDCl₃. S19

Fig. S1 Absorption spectra of 4a recorded in different solvents.

Fig. S2 Absorption spectra of 4b recorded in different solvents.

Fig. S3 Absorption spectra of 4c recorded in different solvents.

Fig. S4 Absorption spectra of 4d recorded in different solvents.

Fig. S5 Absorption spectra of the dyes recorded as thin film.

Fig. S6 Emission spectra of 4a recorded in different solvents.

Fig. S7 Emission spectra of 4c recorded in different solvents.

Fig. S8 Emission spectra of 4d recorded in different solvents.

Fig. S9 Emission spectra of the dyes recorded as thin film.

 Table S1 Absorption data for the dyes (4a-4d) recorded in different solvents with increasing solvent polarity

Dye	$\lambda_{abs,}$ nm ($\epsilon_{max} \times 10^3$ M ⁻¹ cm ⁻¹)								
	СН	TOL	DCM	THF	МеОН	ACN	DMF	Film ^a	
4 a	375,	377 (27.5),	377 (28.4),	375 (31.6),	374,	375,	378 (31.6),	409, 290	
	300	303 (80.8),	300(61.0)	302 (93.5)	299	300	302 (90.9)		
4b	386,	389 (19.0),	392 (28.9),	388 (22.9),	392,	387,	394 (30.0),	403, 303	
	301	303 (56.0)	303 (82.3)	302 (65.0)	300	300	304 (58.7)		
4c	385,	382 (26.7),	389 (29.9),	388 (23.2),	388,	392,	397 (23.2),	405, 290	
	299	301 (69.9),	300 (75.5)	300 (58.9)	299	298,	301 (55.2)		
4d	406	412 (48.3),	414 (57.7),	412 (59.8),	407,	411,	417 (47.3),	423, 304	
	302	305 (108.0)	303 (126.0)	303 (128.0)	300	301	303 (97.7)		

^a Measured for spin cast thin film.

Fig. S10 Differential pulse voltammograms for the dyes (4a-4d) recorded in dichloromethane.

Fig. S11 ¹H NMR spectrum of 4a.

Fig. S12 ¹H NMR (expanded) spectrum of 4a.

Fig. S13 ¹³C NMR spectrum of 4a.

10 2 10330,51% es 0,125627 ese 435 40,400 usec 5.8% used 5.8% used 1,000000000 sec 2 2 2,00 ft 1,000000000 sec

0486421 £1 14.90 cane 2.00 dB 500.1330565 HFs

Fig. S14 ¹H NMR spectrum of 4b.

Fig. S15 ¹H NMR (expanded) spectrum of 4b.

Fig. S16 ¹³C NMR spectrum of 4b.

Fig. S17 ¹H NMR spectrum of 4c.

Fig. S18 ¹H NMR (expanded) spectrum of 4c.

Fig. S19 ¹³C NMR spectrum of 4c.

Fig. S20 ¹H NMR spectrum of 4d.

Fig. S21 ¹H NMR (expanded) spectrum of 4d.

XI

Fig. S22 ¹³C NMR spectrum of 4d.