ESIPT blocked CHEF based differential dual sensor for Zn²⁺ and Al³⁺in pseudo-aqueous medium with intracellular bio-imaging applications and computational studies[†]

Rabiul Alam^a, Tarun Mistri^a, Rahul Bhowmick^a, Atul Katarkar^b, Keya Chaudhuri^band Mahammad Ali^{*a} ^aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, Email: m ali2062@yahoo.com,

^bMolecular & Human Genetics Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S.C. Mullick Road, Kolkata-700032, India

Supporting Information for Publication

Table of contents	
¹ H NMR spectrum of H ₃ SAL-NH in DMSO-d ₆ , in Bruker 300 MHz instrument.	Figure S1
¹³ C NMR spectrum of H-SAI-NH in DMSO-dc in Bruker 300 MHz instrument	Figure S2
Mass spectrum of H ₂ SAI-NH	Figure S3
Mass spectrum of Zn complex	FigureS3a
Mass spectrum of Al complex	Figure S3b
Absorption titration of with AI^{3+} in THF-H ₂ O (6:4, v/v) in HEPES buffer	FigureS4
Lifetime plot of ligand and ligand+ Zn^{2+} in T.H.F:H ₂ O (6:4 (V/V) in HEPES buffer	Figure S5
Lifetime plot of ligand and ligand+ AI^{3+} in T.H.F:H ₂ O(6:4 (V/V) in HEPES buffer.	FigureS6
UV-vis spectrum and Fluorescence excitation spectra of the ligand.	Figure S7
Spectra of Al ³⁺ and after the addition of 1 equivalent Zn ²⁺	Figure S8
Reversibility plot of Zn^{2+} and Al^{3+} complex With Na_2H_2EDTA	Figure S9
LOD determination	Figure S10
FT-IR spectrum of H ₃ SAL-NH in KBr pellet.	Figure S11
FT-IR spectrum of Al Complex(complex 1)	Figure S11a
FT-IR spectrum of Zn Complex (complex 2)	Figure S11b
Frontier molecular orbitals involved in the UV-vis absorption of complex 2.	Figure S12
% cell viability study	Figure S13

¹ H-NMR chemical shifts in ppm of selected H-atoms in DMSO-d ₆	Table S1
Selective bond distance and bond angles of $H_3SAL-NH$, complex 1 and complex 2	Table S2
Selected parameters for the vertical excitation of H ₃ SAL-NH	Table S3
Main calculated optical transition for the complex 1	Table S4
Main calculated optical transition for the complex 2	Table S5
Emission band at lower wavelength (around 430 nm) and at higher Wavelength (above 520 nm) in various solvents.	Figure S14.
Titration with Al ³⁺ in presence of 1equivalent $H_2SAL-NH-Zn^{2+}$ and 1 equivalent Na_2H_2EDTA .	Figure S15

.

Figure S1. ¹H NMR spectrum of H_3 SAL-NH in DMSO-d₆, in Bruker 300 MHz instrument.

Figure S1. ¹H NMR spectrum of H_3 SAL-NHin DMSO-d₆, in Bruker 300 MHz instrument.(Enlarge spectra 9-6 ppm

Figure S2. ¹³C-NMR spectrum of H_3 SAL-NH in DMSO-d₆, in Bruker 300 MHz instrument.

Figure S3. Mass spectrum of $H_3SAL-NH$ in THF.

Figure S3a. Mass spectrum of H₂SAL-NH-Zn²⁺ in THF.

Figure S3b. Mass spectrum of SAL-NH-Al³⁺in MeOH.

FigureS4. (A) Absorption titration of $H_3SAL-NH$ with AI^{3+} in THF-H₂O (6:4, v/v) in HEPES buffer (1 mM) at pH 7.2; (B) Benesi-Hilderbrand plot; (C)JOB'S Plot.

Figure S5. Lifetime plot of H_3 SAL-NHandSAL-NH - AI^{3+} in T.H.F: H_2O (6:4 (V/V) in HEPES buffer.

Figure S6. Lifetime plot of H_3 SAL-NHand H_2 SAL-NH + Zn²⁺ in T.H.F:H₂O(6:4 (V/V) in HEPES buffer.

Figure S7 : UV-vis spectrum and Fluorescence excitation spectra of the ligand.

Figure S8. Spectra of AI^{3+} -SAL-NH and after the addition of 1 equivalent Zn^{2+}

FigureS9. Reversibility plot of Zn^{2+} and Al^{3+} complex with Na_2H_2EDTA .

Calculation of the limit of detection (LOD):

The detection limit DL of H_3 SAL-NH for $M^{2+}(M = Zn \text{ and } AI)$ was determined from 3σ method by following equation: DL = K* Sb₁/S

Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of thecalibration curve obtained from Linear dynamic plot of FI vs. [M^{n+}].(n=2,3)

Figure S10. Determination of Sb₁ or the blank, H_3SAL -NH solution.

Figure S10a. Linear dynamic plot of FI at 496 nm vs. $[Zn^{2+}]$ for the determination of S (slope); $[H_3SAL-NH] = 20 \ \mu M$

LOD (Zn²⁺) = (3 x 0.02)/1.92 x 10⁷= 3.1nM

Figure S10b. Linear dynamic plot of FI at 486 nm vs. [Al³⁺] for the determination of S (slope); [H₃SAL-NH] =20 μ M

LOD (Al³⁺) = (3 x 0.02)/6.46x 10⁷ = 0.92 nM

Figure S10c. Linear dynamic plot of FI at 486 nm vs. $[AI^{3+}]$ for the determination of S (slope); $[H_3SAL-NH] = 20 \ \mu M$, $[Na_2H_2EDTA] = 20 \ \mu M$, $[Zn^{2+}] = 20 \ \mu M$.

LOD (Al³⁺) = (3 x 0.02)/1.86x 10⁷ = 3.2 nM

Figure S11. FT-IR spectrum of H₃SAL-NHin KBr pellet.

Figure S11a. FT-IR spectrum of complex 1 in KBr pellet.

Figure S11b. FT-IR spectrum of complex 2 in KBr pellet.

Figure S12. Frontier molecular orbitals involved in the UV-Vis absorption of the Zn-H₂SAL-NH complex in THF solutions.

Figure S13.% cell viability of HepG2 cells treated with different concentrations (1 μ M-100 μ M) of H₃SAL-NH for 12 hour determined by MTT assay. Results were expressed as mean of three independent experiments.

Quantum Yield Determination:

Fluorescence quantum yields (Φ) were estimated by integrating the area under the

fluorescence curves with the equation: $\Phi_{sample} = \frac{OD_{std}}{OD_{sample}} \times \frac{A_{sample}}{A_{std}} \times \Phi_{std}$

where, A was the area under the fluorescence spectral curve, OD was optical density of the compound at the excitation wavelength and η was the refractive indices of the solvent. Coumarine 153 was used as quantum yield standard (quantum yield is 0.54 in water)for measuring the quantum yields of H₃SAL-NHand [SAL-NH-Al³⁺] and [H₂SAL-NH-Zn²⁺] systems.

Table S1.	¹ H-NMR	chemical	shifts	in pp	m of s	elected	H-atoms	in DMSO)- d 6.

Compound	NH(d)	CH=N(c)	e	- CH ₂ (O)	-CH ₂ OH(m)	-OH(k)	-OH(j)
H₃SAL-NH	12.20	8.57(sligh tly increases)	8.44	5.08	4.56	11.03	11.62
SAL-NH – Al ³⁺ (1)	12.20	8.58	8.44	5.08	4.23	(vanishes)	
H ₂ SAL-NH - Zn ²⁺ (2)	12.20(No change)	8.61	8.45(almost unchanged)	5.08	4.24	11.04(broadeni ng)	11.62

Bond distance(Å)		Bond angles(°)	
N22-N21	1.376	N21 C19 O20	123.21
C19-O20	1.249	C14 C19 O20	120.41
C24-N22	1.298	C25 C24 N22	120.73
C15-O17	1.402	C14 C15 O17	117.85
C27-O42	1.387	C25 C26 C28	121.17

Table S2a: Selective bond distance and bond angles of H_3 SAL-NH.

Table S2b: Selective bond distance and bond angles of SAL-NH–Al³⁺ complex(1).

Bond distance(Å)		Bond angles(°)	
AI25-O30	1.998	N4 Al25 O22	130.64
Al25-022	1.815	O22 Al25 O23	91.48
Al25-023	1.856	N4 Al25 O48	95.60
AI25-N4	2.107	N4 Al25 O30	89.96
AI25-O48	1.806	O22 Al25 O48	132.15
		O23 Al25 O48	109.63
		O23 Al25 O30	167.31
		O30 Al25 O48	80.16

Bond distance(Å)		Bond angles(°)	
Zn44-O45	1.841	O40 Zn44 O45	129.87
Zn44-O20	2.128	N22 Zn44 O45	100.42
Zn44-O40	1.956	N22 Zn44 O40	119.66
Zn44-N22	2.247	O20 Zn44 O45	104.33
		O20 Zn44 O40	114.58

Table S2c: Selective bond distance and bond angles of H₂SAL-NH–Zn²⁺ complex(2).

Table S3.Selected parameters for the vertical excitation (UV-VIS absorptions) of $H_3SAL-NH$; electronicexcitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of L; calculation of the S₀ \rightarrow S_n energy gaps on optimized ground- state geometries (UV-vis absorption).

Electronic	Composition	Excitation	Oscillator	CI	Assign	λ_{exp}
transition	sition energy	strength			(nm)	
			(<i>f</i>)			
$S_0 \rightarrow S_4$	HOMO → LUMO	3.46eV (357 nm)	0.7285	0.69765	ILCT	350
$S_0 \rightarrow S_{11}$	$HOMO - 2 \rightarrow LUMO$	3.9850 eV	0.1418	0.63613	ILCT	313
	HOMO \rightarrow LUMO + 1	(311nm)		0.23905	ILCT	
$S_0 \rightarrow S_{12}$	$HOMO - 4 \rightarrow LUMO$	4.1734eV(297	0.4127	0.17226	ILCT	303
	$HOMO - 3 \rightarrow LUMO$	nm)		0.17041	ILCT	
	$HOMO - 2 \rightarrow LUMO$				ILCT	
	HOMO \rightarrow LUMO+1			0.60798	ILCT	

Table S4.Main calculated optical transition for the complex 1 with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in THF

Electronic	Composition	Excitation	Oscillator strength (f)	CI	Assign	λ _{exp} (nm)
$S_0 \rightarrow S_2$	HOMO-1 → LUMO HOMO→LUMO HOMO → LUMO + 1	3.1024eV (399 nm)	0.0565	0.53202 0.42889 	MLCT/ILCT	398
$S_0 \rightarrow S_5$	HOMO – 4 → LUMO HOMO-2 → LUMO HOMO-2 → LUMO+1	3.6303 eV (341nm)	0.0401	 0.59678 0.19833	MLCT/ILCT MLCT/ILCT MLCT/ILCT	335
$S_0 \rightarrow S_6$	HOMO – 4 → LUMO HOMO – 3 → LUMO HOMO – 2 → LUMO+1	3.9416eV(314 nm)	0.2680	 0.57959 	MLCT/ILCT MLCT/ILCT MLCT/ILCT	321

Table S5 Main calculated optical transition for the complex 2 with composition in terms ofmolecular orbital contribution of the transition, vertical excitation energies, and oscillatorstrength in THF

Electronic	Composition	Excitation	Oscillator	CI	Assign	λ_{exp}
transition		energy	strength			(nm)
			(f)			
$S_0 \rightarrow S_1$	HOMO → LUMO	2.9490eV	0.1365	0.69534	MLCT/ILCT	412
	HOMO → LUMO + 1	(420nm)				
$S_0 \rightarrow S_6$	HOMO – 5 → LUMO	3.7267 eV (332nm)	0.4355		MLCT/ILCT	335
	HOMO-4 → LUMO			0.58118	MLCT/ILCT	

Figure S14. Emission band at lower wavelength (around 430nm) and at higher wavelength(above 520nm) in various solvents.

Figure S15.Titration with Al³⁺ in presence of 1equivalent $H_2SAL-NH-Zn^{2+}$ and 1 equivalent Na_2H_2EDTA .