# Studies of effect of molecular structure and alkyl groups bound with $\operatorname{tin}(I V)$ on their cytotoxicity of organotin(IV) 2-phenyl-4-selenazole carboxylates 

Min Honga*, Yuanguang Yang ${ }^{\mathbf{a}}$, Chuan $\mathbf{L i}^{\mathbf{a}}$, Lidan $\mathrm{Xu}^{\mathbf{a}}$, Dacheng $\mathrm{Li}^{\mathbf{a}, \mathbf{b}}$, Chenzhong Lia ${ }^{\text {a,c }}$<br>${ }^{\text {a }}$ Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China;<br>${ }^{\text {b }}$ Collaborative Innovation Center of Antibody Drugs, Liaocheng University, Liaocheng 252059, China;<br>${ }^{\text {c }}$ Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, 33174, USA.

[^0]
## 1. Preparation of the ligand

2-Phenyl-4-selenazole carboxylic acid prepared by the modified methods reported in the literature [S1-S3]. The detailed synthesis procedure was described as bellow:
(1). Synthesis of selenium substituted benzamide

A mixture of 100 mmol selenium and 120 mmol sodium borohydride was added to a 250 mL round bottom flask, which was vacuumized and purged with nitrogen. Then 50 mL anhydrous ethanol was added slowly under the ice condition. The reaction mixture was stirred for 1 h . The excess of sodium borohydride was destroyed by refluxing and the NaHSe solution system was obtained.

To a solution of NaHSe system was added anhydrous pyridine ( 16 mL ) and benzonitrile (100 mmol ) dropwise at room temperature. The reaction mixture was refluxed for 5 h . After that, the mixture was acidified with $2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ solution and then refluxed for 0.5 h . The salts were removed by hot filtration, and the filtrate was stirred for 0.5 h under the condition of ice-water. After that, the yellow crude product was obtained by filtration, which was recrystallized from benzene to give selenium substituted benzamide. Yield: $85 \%$.
(2). Synthesis of 2-phenyl-4-chloro-methyl selenazole

A mixture of selenium substituted benzamide ( 50 mmol ) and 1,3-dichloroacetone ( 50 mmol ) in acetone ( 50 mL ) was stirred for 2 h at room temperature, which allowed to stand overnight at 0 ${ }^{\circ} \mathrm{C}$. After that, the mixture was filtered, and the precipitate was acidified with sulfuric acid ( 10 mL ) and stirred for 15 min . Then water $(30 \mathrm{~mL})$ was added and the solution was adjusted with NaOH to $\mathrm{pH}=8$. The salts were removed by filtration and the filtrate was extracted with chloroform. The solvent was removed for the combined extract under the reduced pressure, and the resulting residue was recrystallized from ether to afford 2-phenyl-4-chloro-methyl selenazole. Yield: 79\%.
(3). Synthesis of 2-phenyl-4-selenazole methanol

A mixture of 2-phenyl-4-chloro-methyl selenazole ( 20 mmol ), water ( 60 mL ) and concentrated sulfuric acid $(15 \mathrm{~mL})$ was heated at reflux for 8 h . Then the solution was adjusted with NaOH to $\mathrm{pH}=8$ and extracted with chloroform. The solvent was removed for the combined extract under the reduced pressure, and the resulting residue was recrystallized from ether to afford 2-phenyl-4-selenazole methanol. Yield: 86\%.
(4). Synthesis of 2-phenyl-4-selenazole carboxylic acid

To a mixture of 2-phenyl-4-selenazole methanol ( 10 mmol ) in HAc ( 50 mL ) was added $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(20 \mathrm{mmol})$. The reaction mixture was heated at reflux for 2 h . Then, HAc was removed under the reduced pressure. The residue was treated with diluted $\mathrm{HCl}(50 \mathrm{~mL})$ and stirred for 3 h . The solid which separated was collected by filtration and washed with water $(2 \times 25 \mathrm{~mL})$. The solid obtained above was dissolved into the solution of NaOH . After that, diluted sulfuric acid was added dropwise into the reaction mixture. After a short time, some white precipitates were formed which were collected by filtration. The crude product was crystallized from methanol-water solution to give 2-phenyl-4-selenazole carboxylic acid. Yield: $41 \%$. M.p: $166-168{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NSe}$ : C, $47.63 ; \mathrm{H}, 2.79$; N, $5.56 \%$. Found: C, $47.27 ; \mathrm{H}, 2.41 ; \mathrm{N}, 5.78 \%$. IR (KBr, cm1): $3441,1683(-\mathrm{COOH}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{~Hz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta=8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Se}-\mathrm{CH}) ; 7.95-7.42(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.

$$
\mathrm{NaBH}_{4}+\mathrm{Se}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{NaHSe}+\mathrm{B}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}+3 \mathrm{H}_{2}
$$





Scheme S1. Synthesis procedure of 2-phenyl-4-selenazole carboxylic acid ligand.

Table S1. Crystal data and structure refinement parameters for complexes 1-3.

| Compound | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SeSn}$ | $\mathrm{C}_{144} \mathrm{H}_{192} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{Se}_{6} \mathrm{Sn}_{8}$ | $\mathrm{C}_{114} \mathrm{H}_{167} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{Se}_{5} \mathrm{Sn}_{4}$ |
| Formula weight | 601.11 | 3778.34 | 2669.09 |
| Temperature [K] | 298(2) | 298(2) | 298(2) |
| Wavelength ( $\AA$ ) | 0.71073 | 0.71073 | 0.71073 |
| Crystal system | Triclinic | Triclinic | Monoclinic |
| Space group | P-1 | P-1 | P2(1)/c |
| a [ $\AA$ ] | 9.9209(9) | 12.8180(12) | 21.0757(13) |
| $\mathrm{b}[\AA]$ | 14.2128(13) | 14.5201(14) | 16.4218(11) |
| c [ $\AA$ ] | 18.9285(17) | 23.081(2) | 36.968(3) |
| $\alpha\left[{ }^{\circ}\right]$ | 109.323(2) | 95.0770(10) | 90.00 |
| $\beta\left[{ }^{\circ}\right]$ | 101.2380(10) | 92.2830(10) | 97.594(8) |
| $\gamma\left[{ }^{\circ}\right]$ | 94.0190(10) | 112.183(2) | 90.00 |
| Volume [ $\AA^{3}$ ] | 2444.1(4) | 3949.7(7) | 12682.4(15) |
| Z | 4 | 1 | 4 |
| Calculated d [g/cm ${ }^{3}$ ] | 1.634 | 1.588 | 1.398 |
| Absorption coefficient $\left[\mathrm{mm}^{-1}\right]$ | 2.560 | 2.687 | 2.267 |
| F (000) | 1184 | 1876 | 5408 |
| Crystal size [mm] | $0.42 \times 0.40 \times 0.31$ | $0.24 \times 0.19 \times 0.11$ | $0.91 \times 0.72 \times 0.49$ |
| Theta range for data collection [ ${ }^{\circ}$ ] | 2.43-25.02 | 2.21-25.02 | 2.54-25.02 |
| Limiting indices | $-11 \leq \mathrm{h} \leq 11$ | $-15 \leq \mathrm{h} \leq 10$ | $-14 \leq \mathrm{h} \leq 25$ |
|  | $-15 \leq \mathrm{k} \leq 16$ | $-17 \leq \mathrm{h} \leq 17$ | $-19 \leq \mathrm{k} \leq 17$ |
|  | $-22 \leq 1 \leq 16$ | $-26 \leq 1 \leq 27$ | $-43 \leq 1 \leq 42$ |
| Reflections collected | 12463 | 20077 | 45786 |
| Independent reflections | 8507 | 13721 | 22370 |
| R(int) | 0.0301 | 0.0929 | 0.1312 |
| Completeness to theta $=25.02^{\circ}$ | 98.7\% | 98.5\% | 99.9 \% |
| Max. and min. transmission | 0.6924 and 0.6155 | 0.7565 and 0.5649 | 1.0000 and 0.9369 |
| Data / restraints / parameters | 8507 / 0 / 595 | 13721 / 1993 / 807 | 22370 / 0 / 1270 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.942 | 1.042 | 1.02014 |
| Final R indices [I>2 $\sigma$ ( I$)$ ] | $\begin{aligned} & \mathrm{R} 1=0.0347, \mathrm{wR} 2 \\ & =0.0716 \end{aligned}$ | $\begin{aligned} & \mathrm{R} 1=0.1361, \mathrm{wR} 2= \\ & 0.3662 \end{aligned}$ | $\begin{aligned} & \mathrm{R} 1=0.1206, \mathrm{wR} 2= \\ & 0.2779 \end{aligned}$ |
| R indices (all data) | $\begin{aligned} & \mathrm{R} 1=0.0580, \mathrm{wR} 2 \\ & =0.0787 \end{aligned}$ | $\begin{aligned} & \mathrm{R} 1=0.2688, \mathrm{wR} 2= \\ & 0.3255 \end{aligned}$ | $\begin{aligned} & \mathrm{R} 1=0.2878, \text { wR2 }= \\ & 0.4023 \end{aligned}$ |
| Largest diff. peak and hole [ $\mathrm{e} \cdot \AA^{-3}$ ] | 0.418 and -0.960 | 4.326 and -0.867 | 1.366 and -1.222 |

Table S2 Crystal data and structure refinement parameters for complexes 4 and 5.

| Compound | 4 | 5 |
| :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Se}_{2} \mathrm{Sn}$ | $\mathrm{C}_{2853.8} \mathrm{H}_{65.40} \mathrm{Cl}_{4} \mathrm{~N} 4 \mathrm{O}_{12} \mathrm{Se}_{4} \mathrm{Sn}_{8}$ |
| Formula weight | 1536.79 | 2367.26 |
| Temperature [K] | 298(2) | 293(2) |
| Wavelength ( $\AA$ ) | 0.71073 | 0.71073 |
| Crystal system | Monoclinic | Triclinic |
| Space group | P2(1)/n | P-1 |
| a [ $\AA$ ] | 11.656(7) | 10.9295(5) |
| $\mathrm{b}[\AA]$ | 22.167(13) | 14.0488(6) |
| $\mathrm{c}[\AA]$ | 25.229(15) | 14.6562(7) |
| $\alpha\left[^{\circ}\right]$ | 90 | 107.5950(10) |
| $\beta\left[{ }^{\circ}\right]$ | 101.513(8) | 92.3480(10) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 | 112.045(2) |
| Volume [ $\AA^{3}$ ] | 6387(7) | 1957.69(15) |
| Z | 4 | 1 |
| Calculated d [g/cm ${ }^{3}$ ] | 1.598 | 2.008 |
| Absorption coefficient [ $\mathrm{mm}^{-1}$ ] | 2.812 | 4.554 |
| F (000) | 3040 | 1116 |
| Crystal size [mm] | $0.38 \times 0.34 \times 0.31$ | $0.73 \times 0.58 \times 0.21$ |
| Theta range for data collection [ ${ }^{\circ}$ ] | 2.36-25.02 | 2.65-25.02 |
| Limiting indices | $-13 \leq h \leq 13$ | $-13 \leq \mathrm{h} \leq 12$ |
|  | $-26 \leq \mathrm{k} \leq 26$ | $-16 \leq \mathrm{k} \leq 16$ |
|  | $-27 \leq 1 \leq 30$ | $-17 \leq 1 \leq 17$ |
| Reflections collected | 30843 | 11966 |
| Independent reflections | 11130 | 6889 |
| R(int) | 0.1395 | 0.0279 |
| Completeness to theta $=25.02^{\circ}$ | 98.7\% | 99.9\% |
| Max. and min. transmission | 0.4760 and 0.4146 | 0.5762 and 0.4537 |
| Data / restraints / parameters | 11130 / 148 / 597 | 6889 / 0 / 541 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.091 | 1.134 |
| Final R indices [ $\mathrm{I}>2 \sigma(\mathrm{I})$ ] | $\begin{aligned} & \mathrm{R} 1=0.1250, \mathrm{wR} 2= \\ & 0.2210 \end{aligned}$ | $\mathrm{R} 1=0.0443, \mathrm{wR} 2=0.1089$ |
| R indices (all data) | $\begin{aligned} & \mathrm{R} 1=0.2672, \mathrm{wR} 2= \\ & 0.2925 \end{aligned}$ | $\mathrm{R} 1=0.0630, \mathrm{wR} 2=0.1207$ |
| Largest diff. peak and hole [e. $\AA^{-}$ ${ }^{3}$ ] | 1.201 and -1.261 | 0.985 and -0.647 |

Table S3 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 1.

| Sn1-O1 | $2.086(3)$ | Sn2-O4 | $2.064(3)$ |
| :---: | :---: | :---: | :---: |
| Sn1-C11 | $2.110(4)$ | Sn2-C39 | $2.118(4)$ |
| Sn1-C17 | $2.115(4)$ | Sn2-C51 | $2.120(4)$ |
| Sn1-C23 | $2.120(4)$ | Sn2-C45 | $2.135(4)$ |
| O1-Sn1-C11 | $104.31(13)$ | O4-Sn2-C39 | $112.33(14)$ |
| O1-Sn1-C17 | $113.49(13)$ | O4-Sn2-C51 | $117.67(17)$ |
| C11-Sn1-C17 | $117.38(15)$ | C39-Sn2-C45 | $109.74(16)$ |
| O1-Sn1-C23 | $98.08(12)$ | O4-Sn2-C45 | $94.94(14)$ |
| C11-Sn1-C23 | $111.49(15)$ | C39-Sn2-C51 | $117.67(17)$ |
| C17-Sn1-C23 | $110.31(15)$ | C51-Sn2-C45 | $111.92(16)$ |

Table S4 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 2.

| Sn1-C25 | $2.03(2)$ | Sn2-O3 | $1.775(14)$ |
| :---: | :---: | :---: | :---: |
| Sn1-C21 | $2.09(2)$ | Sn2-C33 | $2.05(2)$ |
| Sn1-O3 | $2.199(12)$ | Sn2-C29 | $2.07(3)$ |
| Sn1-O3\#1 | $2.247(14)$ | Sn2-O2 | $2.210(17)$ |
| Sn1-O4 | $2.251(18)$ | Sn2-O4 | $2.401(17)$ |
| C25-Sn1-C21 | $128.0(10)$ | O3-Sn2-C33 | $108.7(9)$ |
| C25-Sn1-O3 | $116.3(8)$ | O3-Sn2-C29 | $109.3(9)$ |
| C21-Sn1-O3 | $114.2(7)$ | C33-Sn2-C29 | $139.8(11)$ |
| C25-Sn1-O3\#1 | $98.9(9)$ | O3-Sn2-O2 | $75.9(6)$ |
| C21-Sn1-O3\#1 | $97.6(9)$ | C33-Sn2-O2 | $100.3(8)$ |
| O3-Sn1-O3\#1 | $83.9(5)$ | C29-Sn2-O2 | $101.2(8)$ |
| C25-Sn1-O4 | $94.4(9)$ | O3-Sn2-O4 | $71.1(6)$ |
| C21-Sn1-O4 | $93.7(9)$ | C33-Sn2-O4 | $93.6(8)$ |
| O3-Sn1-O4 | $67.8(6)$ | C29-Sn2-O4 | $86.5(8)$ |
| O3\#1-Sn1-O4 | $151.6(6)$ | O2-Sn2-O4 | $146.8(7)$ |

Symmetry transformations used to generate equivalent atoms: \#1-x+1, -y, -z+1

Table S5 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 3.

| Sn1-O4 | $2.014(13)$ | Sn3-O3 | $2.027(14)$ |
| :---: | :---: | :---: | :---: |
| Sn1-C9 | $2.06(2)$ | Sn3-C41 | $2.09(3)$ |
| Sn1-C1 | $2.13(2)$ | Sn3-O8 | $2.127(15)$ |
| Sn1-O9 | $2.162(14)$ | Sn3-C33 | $2.14(2)$ |
| Sn1-O5 | $2.384(15)$ | Sn3-O2 | $2.410(16)$ |
| Sn2-O4 | $2.045(13)$ | Sn4-O3 | $2.035(14)$ |


| Sn2-C49 | 2.11(2) | Sn4-C25 | 2.06(3) |
| :---: | :---: | :---: | :---: |
| Sn2-O3 | 2.131(14) | Sn4-C17 | 2.11(2) |
| Sn2-C57 | 2.14(3) | Sn4-O4 | 2.149(13) |
| Sn2-O5 | $2.316(14)$ | Sn4-O2 | 2.230(15) |
| O4-Sn1-C9 | 110.8(8) | O3-Sn3-C41 | 108.8(9) |
| O4-Sn1-C1 | 112.1(7) | O3-Sn3-O8 | 82.3(6) |
| C9-Sn1-C1 | 134.4(9) | C41-Sn3-O8 | 102.8(9) |
| O4-Sn1-O9 | 79.9(6) | O3-Sn3-C33 | $111.9(8)$ |
| C9-Sn1-O9 | 100.8(8) | C41-Sn3-C33 | 135.8(10) |
| C1-Sn1-O9 | 100.9(7) | O8-Sn3-C33 | 99.1(8) |
| O4-Sn1-O5 | 69.8(5) | O3-Sn3-O2 | 67.2(5) |
| C9-Sn1-O5 | 89.3(8) | C41-Sn3-O2 | 89.1(8) |
| C1-Sn1-O5 | 91.5(7) | O8-Sn3-O2 | 149.5(6) |
| O9-Sn1-O5 | 149.7(5) | C33-Sn3-O2 | 91.1(8) |
| O4-Sn2-C49 | 114.5(8) | O3-Sn4-C25 | 114.2(9) |
| O4-Sn2-O3 | 74.4(5) | O3-Sn4-C17 | 114.2(8) |
| C49-Sn2-O3 | 102.5(8) | C25-Sn4-C17 | 131.7(11) |
| O4-Sn2-C57 | 111.4(9) | O3-Sn4-O4 | 74.2(5) |
| C49-Sn2-C57 | 133.7(10) | C25-Sn4-O4 | 94.4(8) |
| O3-Sn2-C57 | 95.1(9) | C17-Sn4-O4 | 98.4(8) |
| O4-Sn2-O5 | 70.8(5) | O3-Sn4-O2 | 70.8(6) |
| C49-Sn2-O5 | 92.3(7) | C25-Sn4-O2 | 98.9(9) |
| O3-Sn2-O5 | 145.2(5) | C17-Sn4-O2 | 96.6(8) |
| C57-Sn2-O5 | 97.1(9) | O4-Sn4-O2 | 145.0(5) |

Table S6 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 4.

| Sn1-O3 | 1.992(13) | Sn3-O4 | 2.077(15) |
| :---: | :---: | :---: | :---: |
| Sn1-C45 | 2.03(3) | Sn3-C41 | 2.08(2) |
| Sn1-C49 | 2.14(2) | Sn3-C37 | 2.12(2) |
| Sn1-O2 | 2.299(14) | Sn3-O3 | 2.130(12) |
| Sn1-Cl1 | 2.488(7) | Sn3-O5 | 2.333(18) |
| Sn2-O3 | 2.062(15) | Sn4-O4 | 2.002(15) |
| Sn2-O4 | 2.097(15) | Sn4-C23 | 2.05(3) |
| Sn2-C11 | 2.13(2) | Sn4-C19 | 2.18(4) |
| Sn2-C15 | 2.14(3) | Sn4-O5 | 2.305(16) |
| Sn2-O2 | 2.368(14) | Sn4-Cl2 | 2.493(8) |
| O3-Sn1-C45 | 115.8(10) | O3-Sn2-O4 | 74.9(5) |
| O3-Sn1-C49 | 115.7(9) | O3-Sn2-C11 | 110.3(9) |
| C45-Sn1-C49 | 127.8(12) | O4-Sn2-C11 | 101.7(8) |
| O3-Sn1-O2 | 71.4(5) | O3-Sn2-C15 | 110.0(10) |
| C45-Sn1-O2 | 93.8(10) | O4-Sn2-C15 | 98.8(10) |
| C49-Sn1-O2 | 94.2(9) | C11-Sn2-C15 | 138.2(12) |


| $\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{Cl} 1$ | $84.2(4)$ | $\mathrm{O} 3-\mathrm{Sn} 2-\mathrm{O} 2$ | $68.8(5)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C} 45-\mathrm{Sn} 1-\mathrm{Cl} 1$ | $96.3(9)$ | $\mathrm{O} 4-\mathrm{Sn} 2-\mathrm{O} 2$ | $143.7(5)$ |
| $\mathrm{C} 49-\mathrm{Sn} 1-\mathrm{Cl} 1$ | $97.0(8)$ | $\mathrm{C} 11-\mathrm{Sn} 2-\mathrm{O} 2$ | $90.1(8)$ |
| $\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$ | $155.5(4)$ | $\mathrm{C} 15-\mathrm{Sn} 2-\mathrm{O} 2$ | $94.4(10)$ |
| $\mathrm{O} 4-\mathrm{Sn} 3-\mathrm{C} 41$ | $109.1(9)$ | $\mathrm{O} 4-\mathrm{Sn} 4-\mathrm{C} 23$ | $114.8(10)$ |
| $\mathrm{O} 4-\mathrm{Sn} 3-\mathrm{C} 37$ | $109.0(7)$ | $\mathrm{O} 4-\mathrm{Sn} 4-\mathrm{C} 19$ | $115.2(13)$ |
| $\mathrm{C} 41-\mathrm{Sn} 3-\mathrm{C} 37$ | $140.0(9)$ | $\mathrm{C} 23-\mathrm{Sn} 4-\mathrm{C} 19$ | $128.0(15)$ |
| $\mathrm{C} 41-\mathrm{Sn} 3-\mathrm{O} 3$ | $103.1(7)$ | $\mathrm{C} 19-\mathrm{Sn} 4-\mathrm{Cl} 2$ | $101.6(12)$ |
| $\mathrm{C} 37-\mathrm{Sn} 3-\mathrm{O} 3$ | $98.6(7)$ | O5-Sn4-Cl2 | $155.6(5)$ |
| $\mathrm{C} 41-\mathrm{Sn} 3-\mathrm{O} 5$ | $88.1(9)$ | O4-Sn4-C20 | $106.8(14)$ |
| $\mathrm{C} 37-\mathrm{Sn} 3-\mathrm{O} 5$ | $94.0(7)$ | $\mathrm{C} 23-\mathrm{Sn} 4-\mathrm{C} 20$ | $138.3(16)$ |
| $\mathrm{O} 3-\mathrm{Sn} 3-\mathrm{O} 5$ | $143.6(6)$ | O5-Sn4-C20 | $103.4(15)$ |

Table S7 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 5.

| Sn1-O3 | $2.042(5)$ | Sn2-O3 | $2.038(5)$ |
| :---: | :---: | :---: | :---: |
| Sn1-C12 | $2.085(9)$ | Sn2-C14 | $2.090(9)$ |
| Sn1-C11 | $2.097(9)$ | Sn2-C13 | $2.089(10)$ |
| Sn1-O3\#1 | $2.109(5)$ | Sn2-O1 | $2.368(6)$ |
| Sn1-O1 | $2.312(59)$ | Sn2-Cl1 | $2.483(3)$ |
| O3-Sn1-C12 | $110.8(3)$ | O3-Sn2-C14 | $102.1(3)$ |
| O3-Sn1-C11 | $108.6(3)$ | O3-Sn2-C13 | $105.5(3)$ |
| C12-Sn1-C11 | $139.4(4)$ | C14-Sn2-C13 | $149.9(4)$ |
| O3-Sn1-O3\#1 | $74.6(2)$ | O3-Sn2-O1 | $70.33(19)$ |
| C12-Sn1-O3\#1 | $98.0(3)$ | C14-Sn2-O1 | $90.6(3)$ |
| C11-Sn1-O3\#1 | $101.5(3)$ | C13-Sn2-O1 | $87.4(3)$ |
| C12-Sn1-O1 | $90.9(3)$ | C14-Sn2-Cl1 | $97.0(3)$ |
| C11-Sn1-O1 | $92.5(3)$ | C13-Sn2-Cl1 | $96.2(3)$ |
| O3\#1-Sn1-O1 | $145.9(2)$ | O1-Sn2-Cl1 | $157.43(14)$ |

Symmetry transformations used to generate equivalent atoms: \#1-x, -y, -z

## References:

S1 G. L. Zhao, X. Shi, J. P. Zhang, J. F. Liu, H. D. Xian, L. X. Shao, Scientia Sinica: Chimica, 2010, 40, 1525-1535.

S1 A. Z. Al-Rubaie, L. Z. Yousifb, A. J. H. Al-Hamadb, J. Organometal. Chem., 2002, 656, 274 280.

S1 A. Shafiee, A. Mazloumi, V. I. Cohen, J. Heterocyclic. Chem., 1979, 16, 1563-1566.


[^0]:    * Corresponding author. Tel.: +866358230662; Fax: +866358239121.

    E-mail address: hongminlcu@163.com (M. Hong).

