Supporting information

Facile Synthesis of Silver Submicrospheres and Their Applications

Bin Tang,^{a,b} Jingliang Li,^{*b} Linpeng Fan^b and Xungai Wang^{*a,b}

^{a.} School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China.

^{b.} Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.

*Corresponding author. E-mail: xungai.wang@deakin.edu.au; jingliang.li@deakin.edu.au.

Fig. S1 SEM images of silver particles obtained by mixing ascorbic acid (2.86×10^{-2} M) and AgNO₃ in the absence of Tween 20 corresponding to AgNO₃ concentrations: (A, B) 3.6×10^{-3} M, (C, D) 1.8×10^{-3} M and (E, F) 3.6×10^{-4} M.

Fig. S2 SEM images of silver particles synthesized through reduction of silver ions by ascorbic acid in the presence of Tween 80 and Triton X-100.

Fig. S3 SEM image of silver particles synthesized through reduction of silver ions $(1.8 \times 10^{-3} \text{ M})$ by ascorbic acid $(2.86 \times 10^{-2} \text{ M})$ in the presence of Tergitol 15-S-7 $(1.81 \times 10^{-3} \text{ M})$.

Fig. S4 Intensity of the absorption peak for 4-NP (400 nm) as a function of time in the presence of different silver submicroparticles.