Supporting Information

Assembly of BF₄⁻, PF₆⁻, ClO₄⁻ and F⁻ with trinuclear copper(I) acetylide complexes bearing amide groups: Structural diversity, photophysics and anion binding properties

Hua-Yun Shi, Yong-Liang Huang, Jia-Kai Sun, Ji-Jun Jiang, Zhi-Xing Luo, Hui-Tao Ling, Chi-Keung Lam and Hsiu-Yi Chao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

	1·BF ₄	1-PF ₆	1·ClO ₄
Formula	$C_{105}H_{83.5}BCu_3F_4N_4O_6P_6\\$	$C_{216}H_{177}Cu_6F_{12}N_{11}O_{12}P_{14}$	$C_{105}H_{84}ClCu_{3}N_{4}O_{10}P_{6}$
M (g/mol)	1960.51	4161.51	1973.65
cryst syst	Orthorhombic	Orthorhombic	Orthorhombic
space group	Pccn	Pccn	Pccn
<i>a</i> (Å)	22.4406(2)	37.4996(2)	37.5964(4)
<i>b</i> (Å)	37.5572(3)	22.30710(10)	22.4534
<i>c</i> (Å)	23.51116(19)	23.64730(10)	23.4691(2)
α (°)	90	90	90
β (°)	90	90	90
γ (°)	90	90	90
$V(Å^3)$	19815.3(3)	19781.14(16)	19811.8(4)
Ζ	8	4	8
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.314	1.397	1.323
<i>T</i> (K)	293(2)	150(2)	150(2)
reflns collected	76185	93931	46763
indep reflns	16018	17425	17318
R _{int}	0.0365	0.0347	0.0364
$R^a, R_w^b [I > 2\sigma(I)]$	0.0733, 0.1948	0.0699, 0.2008	0.0604, 0.1454
GOF on F ²	1.091	1.088	1.060

Table S1. Crystallographic data for $1 \cdot BF_4$, $1 \cdot PF_6$ and $1 \cdot ClO_4$.

 $\overline{{}^{a} R = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|} \qquad {}^{b} R_{w} = [\Sigma w(|F_{0}| - |F_{c}|)^{2}/\Sigma w(|F_{0}|)^{2}]^{1/2}$

	2•BF ₄	3·BF ₄
Formula	$C_{107}H_{84}BCu_3F_{10}N_2O_2P_6$	$C_{420}H_{343}B_4Cu_{12}F_{16}N_8O_8P_{24}\\$
M (g/mol)	2007.01	7483.02
cryst syst	monoclinic	monoclinic
space group	C2/c	Pc
<i>a</i> (Å)	29.9632(4)	27.5828(2)
<i>b</i> (Å)	22.3042(3)	28.8914(2)
<i>c</i> (Å)	30.6835(4)	24.54769(19)
α (°)	90.00	90.00
β (°)	101.1740(10)	103.7049(8)
γ (°)	90.00	90.00
$V(Å^3)$	20117.2(5)	19005.2(3)
Ζ	8	2
$D_{\rm c}$ (mg cm ⁻³)	1.325	1.308
<i>T</i> (K)	293(2)	293(2)
reflns collected	55840	87165
indep reflns	17654	41477
R _{int}	0.0392	0.0325
$R^{a}, R_{w}^{b} [I > 2\sigma(I)]$	0.0412, 0.1085	0.0392, 0.1005
GOF on F ²	1.056	1.016

 Table S2. Crystallographic data for 2·BF₄ and 3·BF₄.

 $\overline{{}^{a} R = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|} \qquad {}^{b} R_{w} = [\Sigma w(|F_{0}| - |F_{c}|)^{2}/\Sigma w(|F_{0}|)^{2}]^{1/2}$

	4•BF ₄	4 · F	
Formula	$C_{107}H_{90}BCu_3F_4N_2O_4P_6\\$	$C_{107}H_{90}Cu_{3}FN_{2}O_{4}P_{6}$	
M (g/mol)	1931.06	1863.25	
cryst syst	monoclinic	monoclinic	
space group	P2 _{1/c}	$P2_1/n$	
<i>a</i> (Å)	22.36838(19)	17.90690(10)	
<i>b</i> (Å)	34.9812(3)	23.0779(2)	
<i>c</i> (Å)	25.4082(2)	27.5279(3)	
α (°)	90.00	90.00	
β (°)	90.3117(8)	104.6560(10)	
γ (°)	90.00	90.00	
$V(Å^3)$	19881.0(3)	11005.85(17)	
Ζ	8	4	
$D_{\rm c}$ (mg cm ⁻³)	1.290	1.124	
<i>T</i> (K)	150(2)	173(2)	
reflns collected	130764	48380	
indep reflns	34881	19328	
R _{int}	0.0488	0.0378	
$R^a, R_w^b [I > 2\sigma(I)]$	0.1195, 0.3058	0.0444, 0.1233	
GOF on F ²	1.066	1.029	

Table S3. Crystallographic data for $4 \cdot BF_4$ and $4 \cdot F$.

 $\overline{{}^{a} R = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|} \qquad {}^{b} R_{w} = [\Sigma w(|F_{0}| - |F_{c}|)^{2}/\Sigma w(|F_{0}|)^{2}]^{1/2}$

1·B	F4	1.0	2104
Cu(1)…Cu(2)	2.7378(10)	Cu(1)…Cu(2)	2.5709(8)
Cu(1)…Cu(3)	2.5438(9)	Cu(1)…Cu(3)	2.7466(8)
Cu(2)…Cu(3)	2.5644(10)	Cu(2)…Cu(3)	2.5473(7)
C(83)–Cu(1)	2.409(5)	C(1)–Cu(1)	2.318(4)
C(83)–Cu(2)	2.176(5)	C(1)–Cu(2)	2.111(4)
C(83)–Cu(3)	2.071(5)	C(1)–Cu(3)	2.130(4)
C(99)–Cu(1)	2.128(5)	C(16)–Cu(1)	2.168(4)
C(99)–Cu(2)	2.302(5)	C(16)–Cu(2)	2.076(4)
C(99)–Cu(3)	2.107(5)	C(16)–Cu(3)	2.423(4)
Cu(1)–P(4)	2.2605(14)	Cu(1)–P(1)	2.2945(11)
Cu(1)–P(5)	2.2946(14)	Cu(1)–P(6)	2.2662(12)
Cu(2)–P(6)	2.2677(16)	Cu(2)–P(2)	2.2845(10)
Cu(2)–P(7)	2.2978(14)	Cu(2)–P(3)	2.2838(11)
Cu(3) –P(8)	2.2822(13)	Cu(3) –P(4)	2.2949(11)
Cu(3)–P(9)	2.2835(14)	Cu(3)–P(5)	2.2598(11)
C(83)–C(84)	1.207(7)	C(1)–C(2)	1.203(5)
C(99)–C(100)	1.219(7)	C(16)–C(17)	1.207(6)
C(91)–O(114)	1.223(7)	C(9)–O(1)	1.216(5)
C(107)–O(117)	1.218(6)	C(24)–O(4)	1.224(6)
N(121)–O(118)	1.232(8)	N(2)–O(2)	1.223(6)
N(121)-O(119)	1.224(9)	N(2)–O(3)	1.226(6)
N(123)–O(115)	1.235(7)	N(4)–O(5)	1.223(6)
N(123)–O(116)	1.224(7)	N(4)–O(6)	1.216(6)
C(84)–C(83)–Cu(1)	122.6(4)	C(2)–C(1)–Cu(1)	124.6(3)
C(84)–C(83)–Cu(2)	126.3(4)	C(2)–C(1)–Cu(2)	149.3(3)
C(84)–C(83)–Cu(3)	157.4(5)	C(2)-C(1)-Cu(3)	132.7(3)
C(100)–C(99)–Cu(1)	132.5(4)	C(17)–C(16)–Cu(1)	125.8(3)
C(100)–C(99)–Cu(2)	124.8(4)	C(17)–C(16)–Cu(2)	157.3(4)
C(100)–C(99)–Cu(3)	149.1(4)	C(17)–C(16)–Cu(3)	123.6(3)
Cu(1)–C(83)–Cu(2)	73.14(15)	Cu(1)–C(1)–Cu(2)	70.78(11)
Cu(1)–C(83)–Cu(3)	68.72(15)	Cu(1)-C(1)-Cu(3)	76.12(12)
Cu(2)–C(83)–Cu(3)	74.25(16)	Cu(2)–C(1)–Cu(3)	73.81(12)
Cu(1)–C(99)–Cu(2)	76.22(15)	Cu(1)–C(16)–Cu(2)	74.54(13)
Cu(1)–C(99)–Cu(3)	73.83(15)	Cu(1)–C(16)–Cu(3)	68.48(12)
Cu(2)–C(99)–Cu(3)	70.98(14)	Cu(2)–C(16)–Cu(3)	68.48(12)

Table S4. Selected bond lengths (Å) and angles (°) for $1{\cdot}BF_4$ and $1{\cdot}ClO_4.$

2·B	F4	3·B	F4
Cu(1)…Cu(2)	2.8375(5)	Cu(1)…Cu(2)	2.5908(8)
Cu(1)…Cu(3)	2.6987(5)	Cu(1)…Cu(3)	2.5774(8)
Cu(2)…Cu(3)	2.4944(4)	Cu(2)…Cu(3)	2.6297(8)
C(117)–Cu(1)	2.018(2)	C(1)–Cu(1)	2.251(4)
C(117)–Cu(2)	2.317(2)	C(1)–Cu(2)	2.080(4)
C(117)–Cu(3)	2.157(2)	C(1)–Cu(3)	2.223(4)
C(119)–Cu(2)	2.079(2)	C(16)–Cu(1)	2.121(4)
C(119)–Cu(3)	2.041(2)	C(16)–Cu(2)	2.222(4)
Cu(1)–P(1)	2.2991(6)	C(16)–Cu(3)	2.174(4)
Cu(1)–P(6)	2.2901(6)	Cu(1)–P(1)	2.2716(12)
Cu(2)–P(4)	2.2609(7)	Cu(1)–P(6)	2.2957(12)
Cu(2)–P(5)	2.3193(6)	Cu(2)–P(2)	2.2872(12)
Cu(3) –P(2)	2.2540(6)	Cu(2)–P(3)	2.2803(11)
Cu(3)–P(3)	2.2838(6)	Cu(3) –P(4)	2.2787(10)
C(104)–C(117)	1.212(3)	Cu(3)–P(5)	2.2826(11)
C(113)–C(119)	1.211(3)	C(1)–C(2)	1.205(6)
C(18)–O(1)	1.213(4)	C(16)–C(17)	1.222(6)
C(92)–O(2)	1.232(3)	C(9)–O(1)	1.225(9)
C(104)–C(117)–Cu(1)	136.0(2)	C(24)–O(4)	1.250(6)
C(104)–C(117)–Cu(2)	127.07(19)	C(2)–C(1)–Cu(1)	130.3(3)
C(104)–C(117)–Cu(3)	137.85(19)	C(2)–C(1)–Cu(2)	151.4(4)
C(113)–C(119)–Cu(2)	138.5(2)	C(2)–C(1)–Cu(3)	124.2(3)
C(113)–C(119)–Cu(3)	146.1(2)	C(17)–C(16)–Cu(1)	147.9(4)
Cu(1)–C(117)–Cu(2)	81.45(8)	C(17)–C(16)–Cu(2)	128.6(3)
Cu(1)–C(117)–Cu(3)	80.48(8)	C(17)–C(16)–Cu(3)	130.8(3)
Cu(2)–C(117)–Cu(3)	67.65(7)	Cu(1)–C(1)–Cu(2)	73.36(13)
Cu(2)–C(119)–Cu(3)	74.57(10)	Cu(1)–C(1)–Cu(3)	70.35(13)
		Cu(2)–C(1)–Cu(3)	75.25(13)
		Cu(1)–C(16)–Cu(2)	73.20(13)
		Cu(1)–C(16)–Cu(3)	73.73(13)
		Cu(2)–C(16)–Cu(3)	73.47(13)

Table S5. Selected bond lengths (Å) and angles (°) for $2{\cdot}BF_4$ and $3{\cdot}BF_4$

4.1	3F4	4	·F
Cu(1)…Cu(2)	2.6006(10)	Cu(1)…Cu(2)	2.6288(4)
Cu(1)…Cu(3)	2.6089(10)	Cu(1)…Cu(3)	2.6204(4)
Cu(2)…Cu(3)	2.5791(10)	Cu(2)…Cu(3)	2.6191(4)
C(1)–Cu(1)	2.182(5)	C(1)–Cu(1)	2.250(2)
C(1)–Cu(2)	2.217(5)	C(1)–Cu(2)	2.296(2)
C(1)–Cu(3)	2.344(5)	C(1)–Cu(3)	2.047(2)
C(17)–Cu(1)	2.220(5)	C(17)–Cu(1)	2.209(2)
C(17)–Cu(2)	2.203(5)	C(17)–Cu(2)	2.047(2)
C(17)–Cu(3)	2.111(5)	C(17)–Cu(3)	2.278(2)
Cu(1)–P(1)	2.2929(15)	Cu(1)–P(1)	2.2700(5)
Cu(1)–P(6)	2.2969(16)	Cu(1)–P(3)	2.2705(6)
Cu(2)–P(2)	2.2649(14)	Cu(2)–P(4)	2.2902(5)
Cu(2)–P(3)	2.2839(14)	Cu(2)–P(6)	2.2849(6)
Cu(3) –P(4)	2.2874(14)	Cu(3)–P(2)	2.2904(5)
Cu(3)–P(5)	2.2633(14)	Cu(3)–P(5)	2.2793(6)
C(1)–C(2)	1.134(8)	C(1)–C(2)	1.211(3)
C(17)–C(18)	1.185(8)	C(17)–C(18)	1.215(3)
C(9)–O(1)	1.223(11)	C(9)–O(1)	1.240(3)
C(25)–O(3)	1.202(8)	C(25)–O(3)	1.224(3)
C(2)–C(1)–Cu(1)	145.1(5)	C(2)–C(1)–Cu(1)	119.21(17)
C(2)–C(1)–Cu(2)	132.2(5)	C(2)–C(1)–Cu(2)	122.50(16)
C(2)–C(1)–Cu(3)	136.2(5)	C(2)–C(1)–Cu(3)	160.15(18)
C(18)–C(17)–Cu(1)	140.5(5)	C(18)–C(17)–Cu(1)	119.95(17)
C(18)–C(17)–Cu(2)	134.2(4)	C(18)–C(17)–Cu(2)	156.79(17)
C(18)–C(17)–Cu(3)	134.6(5)	C(18)–C(17)–Cu(3)	124.96(16)
Cu(1)–C(1)–Cu(2)	72.48(17)	Cu(1)–C(1)–Cu(2)	70.66(6)
Cu(1)–C(1)–Cu(3)	70.30(16)	Cu(1)–C(1)–Cu(3)	74.98(7)
Cu(2)–C(1)–Cu(3)	68.82(16)	Cu(2)–C(1)–Cu(3)	73.93(6)
Cu(1)–C(17)–Cu(2)	72.02(16)	Cu(1)–C(17)–Cu(2)	76.18(7)
Cu(1)–C(17)–Cu(3)	74.03(17)	Cu(1)–C(17)–Cu(3)	71.43(6)
Cu(2)–C(17)–Cu(3)	73.40(17)	Cu(2)–C(17)–Cu(3)	74.32(7)

Table S6. Selected bond lengths (Å) and angles (°) for $4{\cdot}BF_4$ and $4{\cdot}F$

ligands	medium	$\lambda_{\rm abs}$ / nm (ε / dm ³ mol ⁻¹ cm ⁻¹)	$\lambda_{\rm em}/$ nm
L1	DMSO	268 (26790), 312 (11870)	469
	solid		No-emission
L2	DMSO	290 (19670)	468
	solid		438, 469
L3	DMSO	288 (28480)	468
	solid		424, 463
L4	DMSO	292 (28860)	468
	solid		439, 469

Table S7. Photophysical data of ligands L1–L4 at 298 K.

Figure S1. Powder X-ray diffraction patterns for the anion complexes: as-synthesized (red) and simulated from the single-crystal diffraction data (black), (a) **1**·BF₄; (b) **1**·PF₆; (c) **1**·ClO₄; (d) **2**·BF₄; (e) **3**·BF₄; (f) **4**·BF₄; and (g) **4**·F.

Figure S2. Electronic absorption spectra of 1·BF₄, 1·PF₆, and 1·ClO₄ in DMSO at 298 K.

Figure S3. Electronic absorption spectra of 2·BF₄–4·BF₄ in DMSO at 298 K.

Figure S4. Electronic absorption spectra of 4·BF₄, and 4·F in DMSO at 298 K.

Figure S5. Emission spectrum of $1 \cdot BF_4$ in the solid state at 298 K ($\lambda_{ex} = 371$ nm).

Figure S6. Emission spectrum of $1 \cdot PF_6$ in the solid state at 298 K ($\lambda_{ex} = 372$ nm).

Figure S7. Emission spectrum of $1 \cdot \text{ClO}_4$ in the solid state at 298 K ($\lambda_{ex} = 371$ nm).

Figure S8. Emission spectrum of $2 \cdot BF_4$ in the solid state at 298 K ($\lambda_{ex} = 428$ nm).

Figure S9. Emission spectrum of $4 \cdot BF_4$ in the solid state at 298 K ($\lambda_{ex} = 407$ nm).

Figure S10. Emission spectrum of $4 \cdot F$ in the solid state at 298 K ($\lambda_{ex} = 408$ nm).

Figure S11. Emission spectrum of $1 \cdot BF_4$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K ($\lambda_{ex} = 380$ nm).

Figure S12. Emission spectrum of $1 \cdot PF_6$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K (λ_{ex} = 380 nm).

Figure S13. Emission spectrum of $1 \cdot \text{ClO}_4$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K (λ_{ex} = 380 nm).

Figure S14. Emission spectrum of $2 \cdot BF_4$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K (λ_{ex} = 380 nm).

Figure S15. Emission spectrum of $3 \cdot BF_4$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K (λ_{ex} = 380 nm).

Figure S16. Emission spectrum of $4 \cdot BF_4$ (3.96×10⁻⁵ mol dm⁻³) in DMSO at 298 K (λ_{ex} = 380 nm).

Figure S17. Emission spectrum of 4·F (3.96×10^{-5} mol dm⁻³) in DMSO at 298 K ($\lambda_{ex} = 380$ nm).

Figure S18. The ¹H NMR spectral changes of 1·BF₄ upon addition of Cl⁻ in DMSO-d₆ at 298 K.

Figure S19. The ¹H NMR spectral changes of $1 \cdot BF_4$ upon addition of Br⁻ in DMSO-d₆ at 298 K.

Figure S20. The ¹H NMR spectral changes of **1**•**BF**₄ upon addition of I⁻ in DMSO-d₆ at 298 K.

Figure S21. The ¹H NMR spectral changes of $1 \cdot BF_4$ upon addition of OAc⁻ in DMSO-d₆ at 298 K.

18

Figure S22. The shifts of the signals of amide N–H (H_a) of $1 \cdot BF_4 - 4 \cdot BF_4$ upon addition of the same anion ((a) OAc⁻; (b) Cl⁻) with different concentrations in DMSO–*d*₆ at 298 K.

Figure S23. The ¹H NMR spectral changes of $1 \cdot BF_4$ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S24. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $1 \cdot BF_4$ (5.0×10⁻³ mol dm⁻³) + 10 eq of F⁻. Insert: the ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of BF₄⁻ in this system.

Figure S25. The ¹H NMR spectral changes of 1·PF₆ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S26. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $1 \cdot PF_6$ (5.0×10⁻³ mol dm⁻³) + 10 eq of F⁻. Insert: the ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of PF₆⁻ in this system.

Figure S27. The ¹H NMR spectral changes of $1 \cdot \text{ClO}_4$ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S28. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $1 \cdot \text{ClO}_4$ (5.0×10⁻³ mol dm⁻³) + 10 eq of F⁻.

Figure S29. The ¹H NMR spectral changes of $2 \cdot BF_4$ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S30. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $2 \cdot BF_4$ (5.0×10⁻³ mol dm⁻³) + 10 eq of F⁻. Insert: the ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of CF₃ group (left) and BF₄⁻ (right) in this system.

Figure S31. The ¹H NMR spectral changes of $3 \cdot BF_4$ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S32. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $3 \cdot BF_4$ (5.0×10⁻³ mol dm⁻³) + 10 eq of F⁻. Insert: the ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of BF₄⁻ in this system.

Figure S33. The ¹H NMR spectral changes of $4 \cdot BF_4$ upon addition of F⁻ in DMSO-d₆ at 298 K.

Figure S34. The ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of $4 \cdot BF_4$ (5.0×10^{-3} mol dm⁻³) + 10 eq of F⁻. Insert: the ¹⁹F NMR (DMSO-d₆, 298 K) spectrum of BF₄⁻ in this system.

 $1 \cdot BF_4 - 1 \cdot BF_4 + F^- 1 \cdot BF_4 + C1^- 1 \cdot BF_4 + Br^- 1 \cdot BF_4 + I^- 1 \cdot BF_4 + OAc^-$

Figure S35. Colors of $1 \cdot BF_4$ (1.98×10⁻⁵ mol dm⁻³) in DMSO in the presence of 100 eq F⁻, Cl⁻, Br⁻, I⁻ and OAc⁻.

Figure S36. The UV–vis spectra of $1 \cdot BF_4$ (1.98×10⁻⁵ mol dm⁻³) in DMSO in the presence of 100 eq F⁻, Cl⁻, Br⁻, I⁻ and OAc⁻.

Figure S37. The ESI-MS spectra of ligands, (a) L1; (b) L2; (c) L3; (d) L4. (partial spectra are shown due to the large scale of the spectra)

Figure S38. The ESI-MS spectra of complexes, (a) $1 \cdot BF_4$; (b) $1 \cdot PF_6$; (c) $1 \cdot ClO_4$; (d) $2 \cdot BF_4$; (e) $3 \cdot BF_4$; (f) $4 \cdot BF_4$; and (g) $4 \cdot F$. (partial spectra are shown due to the large scale of the spectra)