Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Palladium catalyzed regioselective mono-alkenylation of *o*-carboranes via Heck type coupling reaction of cage B-H bond

Ji Wu, Ke Cao*, Tao-Tao Xu, Xiao-Juan Zhang, Linhai Jiang, Junxiao Yang and Yawen Huang

State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China E-mail: caoke@swust.edu.cn

Context

1. General information

2. Experimental

3. Spectroscopic data for products

4. Copies of ¹H NMR, ¹³C{¹H} NMR, ¹¹B NMR and ¹¹B{H} NMR

General information

1b¹, 1c², 1d², 1e³ were synthesized according to literature methods. THF was dried and freshly distilled over sodium before used. Styrenes were synthesized via Wittig reaction. Other materials were purchased from J&K Scientific and used as received unless otherwise specified. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (200-300 meshes) is used for column chromatography, and the distillation range of petroleum ether is $60-90^{\circ}$ C. ¹H NMR, ¹³C{¹H} NMR, ¹¹B NMR and ¹¹B{¹H} NMR spectra were recorded on the Bruker 600MHz instruments. All ¹H NMR and ¹³C NMR spectral data are reported in *ppm* relative to tetramethylsilane (TMS) as internal standard, and ¹¹B NMR spectral data are referenced to external BF₃•Et₂O. HRMS data were measured with ESI techniques.

Experiment

General procedure for palladium catalyzed arylation of *o*-carboranes:

To a 10 mL dried flask were sequentially added *o*-carborane (0.25 mmol), THF (1 mL), Pd(OAc)₂ (5.6 mg, 0.025 mmol), AgOAc (83.5 mg, 0.5 mmol), styrene (0.75 mmol) under argon atmosphere. After the reaction mixture was stirred at 80°C for 48h, the reaction mixture was cooled to room temperature and filtered through a short silica gel column using CH_2Cl_2 as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether as eluent.

Reference:

- Heying, T. L., Jr., Ager, J. W., Clark, S. L., Alexander, R. P., Papetti, S., Reid, J. A., Trotz, S. I. *Inorg. Chem.*, 2, 1097-1105 (1963).
- Paxson, T. E., Kaloustian, M. K., Tom, G. M., Wiersema, R. J., Hawthorne, M. F. J. Am. Chem. Soc., 94, 4882-4888 (1972).
- 3. Armstrong, A. F., Valliant, J. F. Inorg. Chem., 46, 2148-2158 (2007).

Spectroscopic data for products:

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.42-7.40 (d, *J* = 12Hz, 2H), 7.38-7.36 (d, *J* = 12Hz, 2H), 7.31-7.26 (m, 4H), 7.21-7.16 (m, 2H), 6.75-6.72 (d, *J* = 18Hz, 1H), 6.60-6.57 (d, *J* = 18Hz, 1H), 6.44-6.41 (d, *J* = 18Hz, 1H), 6.35-6.32(d, *J* = 18Hz, 1H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 140.0, 138.9, 128.4, 128.3, 127.2, 126.9, 126.2, 126.1, 79.1, 67.4, 23.4, 23.2. 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.3 (1B, -*B*(*9*)-CH), -1.6 (1B, -*B*(*8*)-CH), -4.9 (3B), -9.1 (2B), -10.3 (7B), -11.5 (2B); HRMS: calculated for C₁₂B₁₀H₂₃ (M⁺+H) 275.2795; found: 275.2797.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.38-7.35 (m, 14H), 7.30-7.21 (m, 16H), 6.64-6.61 (d, J = 18Hz, 1H), 6.48-6.45 (d, J = 18Hz, 1H), 6.37-6.34 (d, J = 18Hz, 1H), 6.25-6.22 (d, J = 18Hz, 1H), 3.66 (s, 3H), 3.65 (s, 2H), 3.64 (s, 2H), 3.63 (s, 1H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 139.9, 138.8, 138.7, 135.1, 135.0, 134.9, 131.1, 130.4, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 127.1, 126.9, 126.1, 124.4, 77.9, 73.7, 41.4, 41.3, 40.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 4.5 (1B, *-B*(9)-CH), -0.8 (1B, *-B*(8)-CH), -3.6 (3B), -10.7 (11B); HRMS: calculated for C₂₄B₁₀H₃₁ (M⁺+H) 427.3418; found: 427.3423.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is

about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.42-7.41 (m, 2H), 7.38-7.36 (m, 2H), 7.30-7.27 (m, 6H), 7.21-7.17 (m, 2H), 6.76-6.73 (d, *J* = 18Hz, 1H), 6.60-6.57 (d, *J* = 18Hz, 1H), 6.47-6.44 (d, *J* = 18Hz, 1H), 6.35-6.32 (d, *J* = 18Hz, 1H), 2.54-2.50 (m, 8H), 2.46-2.41 (m, 4H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 139.9, 138.8, 128.4, 128.3, 127.2, 126.9, 126.2, 126.1, 82.8, 82.4, 78.6, 34.7, 34.6, 33.9, 32.3, 31.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 2.1 (1B, *-B*(*9*)-CH), 1.2 (1B, *-B*(*8*)-CH), -6.1 (3B), -7.5 (2B), -9.0 (2B), -9.4 (2B), -11.7 (3B), -12.2 (4B); HRMS: calculated for C₁₃B₁₀H₂₃ (M⁺+H) 287.2796; found: 287.2797.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.42-7.40 (m, 2H), 7.37-7.36 (m, 2H), 7.30-7.25 (m, 4H), 7.20-7.15 (m, 2H), 6.76-6.73 (d, *J* = 18Hz, 1H), 6.59-6.56 (d, *J* = 18Hz, 1H), 6.47-6.44 (d, *J* = 18Hz, 1H), 6.34-6.31 (d, *J* = 18Hz, 1H), 2.46-2.45 (m, 8H), 1.60-1.59 (m, 8H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 139.9, 138.8, 128.4, 128.3, 127.2, 126.9, 126.2, 126.1, 71.7, 67.2, 32.8, 32.7, 32.1, 19.8, 19.7, 19.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.0 (1B, *-B*(*9*)-CH), -0.1 (1B, *-B*(*8*)-CH), -5.1 (2B), -8.7 (2B), -9.6 (2B), -10.1 (4B), -12.1 (3B), -14.5 (2B); HRMS: calculated for C₁₄B₁₀H₂₅ (M⁺+H) 301.2952; found: 301.2954.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.52-7.51 (m, 4H), 7.43-7.39 (m, 6H), 7.36 -7.31 (m, 7H), 7.29-7.25 (m, 3H), 6.94-6.91 (d, *J* = 18Hz, 1H), 6.66-6.63 (d, *J* = 18Hz, 1H), 6.42-6.39 (d, *J* = 18Hz, 1H), 6.41-6.38 (d, *J* = 18Hz, 1H), 4.05 (s, 1H), 3.87 (s, 1H);

¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 143.3, 139.0, 130.4, 129.9, 128.9, 128.8, 128.6, 128.5, 128.3, 128.0, 127.6, 127.5, 127.1, 126.4, 126.2, 79.3, 60.9, 54.4; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.6 (1B, *-B*(9)-CH), *-*2.2 (1B, *-B*(8)-CH), *-*3.7 (2B), *-*8.5 (2B), *-*10.8 (3B), *-*13.5 (2B); HRMS: calculated for C₁₆B₁₀H₂₃ (M⁺+H) 323.2797; found: 323.2797.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.31-7.30 (m, 2H), 7.27-7.26 (m, 2H), 7.11-7.10 (m, 2H), 7.08-7.07 (m, 2H), 6.72-6.69 (d, *J* = 18Hz, 1H), 6.57-6.54 (d, *J* = 18Hz, 1H), 6.37-6.34 (d, *J* = 18Hz, 1H), 6.28-6.25 (d, *J* = 18Hz, 1H), 2.33 (s, 3H), 2.31 (s, 3H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 139.9, 138.8, 136.9, 136.7, 129.1, 128.9, 126.1, 126.0, 71.9, 67.3, 23.4, 23.2, 22.5, 21.2, 21.1; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.8 (1B, *-B*(*9*)-CH), -1.1 (1B, *-B*(*8*)-CH), -4.5 (3B), -8.8 (3B), -9.9 (8B), -11.2 (2B); HRMS: calculated for C₁₃B₁₀H₂₅ (M⁺+H) 289.2951; found: 289.2954.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.4.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.24 (s, 1H), 7.23-7.20 (m, 2H), 7.18-7.14 (m, 3H), 7.02-6.98 (m, 2H), 6.71-6.68 (d, *J* = 18Hz, 1H), 6.56-6.53 (d, *J* = 18Hz, 1H), 6.42-6.39 (d, *J* = 18Hz, 1H), 6.33-6.30 (d, *J* = 18Hz, 1H), 2.33 (s, 3H), 2.31 (s, 3H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 140.1, 138.9, 137.8, 137.7, 128.3, 128.2, 127.9, 127.8, 126.8, 123.4, 71.9, 67.3, 23.4, 23.2, 22.5, 21.4, 21.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.7 (1B, -*B*(9)-CH), -1.2 (1B, -*B*(8)-CH), -4.5 (2B), -8.7 (2B), -9.9 (5B), -11.2 (2B); HRMS: calculated for C₁₃B₁₀H₂₅ (M⁺+H)

289.2950; found: 289.2954.

A separable B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.31-7.30 (d, *J* = 6Hz, 2H), 6.81-6.80 (d, *J* = 6Hz, 2H), 6.53-6.50 (d, *J* = 18Hz, 1H), 6.18-6.15 (d, *J* = 18Hz, 1H), 3.79 (s, 3H), 2.05 (brs, 6H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 158.8, 138.3, 127.3, 113.7, 71.9, 67.1, 55.3, 23.4, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.5 (1B, -*B*(9)-CH), -5.1 (2B), -9.2 (2B), -10.3 (5B); HRMS: calculated for C₁₃B₁₀H₂₅O₁ (M⁺+H) 305.2905; found: 305.2903.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.34-7.33 (d, *J* = 6Hz, 2H), 6.84-6.83 (d, *J* = 6Hz, 2H), 6.68-6.65 (d, *J* = 18Hz, 1H), 6.27-6.24 (d, *J* = 18Hz, 1H), 3.80 (s, 3H), 2.05 (s, 6H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 158.8, 139.3, 127.3, 113.8, 71.7, 55.3, 23.2; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -1.3 (1B, -*B*(*9*)-CH), -4.9 (2B), -8.9 (1B), -9.7 (1B), -10.4 (1B), -11.6 (3B).

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.6.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.51-7.50 (d, *J* = 6Hz, 1H), 7.47-7.46 (d, *J* = 6Hz, 1H), 7.18-7.15 (m, 2H), 7.13-7.10 (d, *J* = 18Hz, 1H), 6.98-6.95 (d, *J* = 18Hz, 1H), 6.91-6.88 (m, 2H), 6.86-6.81 (m, 2H), 6.42-6.39 (d, *J* = 18Hz, 1H), 6.33-6.30 (d, *J* = 18Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, 150MHz), 150MHz, 150MHz, 110, 150MHz, 150MHz, 110, 150MHz, 110, 150MHz, 110, 150MHz, 110, 150MHz, 110, 150MHz, 150MH

CDCl₃, *ppm*): δ 156.5, 134.2, 133.1, 128.2, 127.9, 126.1, 126.0, 120.5, 120.4, 110.9, 110.8, 71.9, 67.1, 55.5, 23.4, 23.2, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.6 (1B, -*B*(9)-CH), -1.3 (1B, -*B*(8)-CH), -4.8 (2B), -9.1 (2B), -9.7 (3B), -10.4 (4B), -11.5 (3B); HRMS: calculated for C₁₃B₁₀H₂₅O₁ (M⁺+H) 305.2899; found: 305.2903.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.41-7.40 (d, J = 6Hz, 2H), 7.38-7.37 (d, J = 6Hz, 2H), 7.27-7.21 (m, 4H), 6.66-6.63 (d, J = 18Hz, 1H), 6.51-6.48 (d, J = 18Hz, 1H), 6.42-6.39 (d, J = 18Hz, 1H), 6.33-6.30 (d, J = 18Hz, 1H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 138.8, 137.7, 137.6, 131.4, 131.3, 130.8, 127.7, 120.8, 120.6, 72.1, 67.7, 23.4, 23.2, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.0 (1B, -*B*(*9*)-CH), -1.8 (1B, -*B*(*8*)-CH), -4.9 (2B), -9.1 (2B), -10.3 (4B), -11.4 (4B); HRMS: calculated for C₁₂B₁₀H₂₂Br (M⁺+H) 353.1899; found: 353.1903.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.56-7.55 (m, 1H), 7.52-7.50 (m, 2H), 7.49-7.48 (m, 1H), 7.25-7.19 (m, 2H), 7.07-7.02 (m, 3H), 6.95-6.92 (d, *J* = 18Hz, 1H), 6.37-6.34 (d, *J* = 18Hz, 1H), 6.29-6.26 (d, *J* = 18Hz, 1H), 2.06 (s, 8H), 2.05 (s, 4H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 138.6, 137.5, 132.8, 132.7, 128.4, 128.2, 127.3, 127.2, 126.8, 126.7, 123.6, 123.5, 72.1, 68.4, 23.4, 23.2, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 2.9 (1B, *-B*(*9*)-CH), -1.9 (1B, *-B*(*8*)-CH), -4.9 (2B), -9.1 (3B), -10.3 (3B), -11.4 (5B); HRMS: calculated for C₁₂B₁₀H₂₂Br (M⁺+H) 353.1902; found: 353.1903.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.33-7.32 (d, *J* = 6Hz, 2H), 7.29-2.38 (d, *J* = 6Hz, 2H), 7.25-7.22 (m, 4H), 6.68-6.65 (d, *J* = 18Hz, 1H), 6.53-6.50 (d, *J* = 18Hz, 1H), 6.41-6.38 (d, *J* = 18Hz, 1H), 6.31-6.28 (d, *J* = 18Hz, 1H), 2.05 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 138.7, 137.6, 132.7, 132.5, 128.5, 128.4, 127.4, 127.3, 72.1, 67.6, 23.4, 23.2, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.4 (1B, -*B*(9)-CH), -1.4 (1B, -*B*(8)-CH), -4.5 (3B), -8.7 (2B), -9.9 (6B), -11.1 (2B); HRMS: calculated for C₁₂B₁₀H₂₂Cl (M⁺+H) 309.2407; found: 309.2408.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.53-7.51 (dd, *J* = 6Hz, 1H), 7.49-7.47 (dd, *J* = 6Hz, 1H), 7.16-7.12 (m, 2H), 7.08-6.97 (m, 4H), 6.95-6.92 (d, *J* = 18Hz, 1H), 6.80-6.77 (d, *J* = 18Hz, 1H), 6.49-6.46 (d, *J* = 18Hz, 1H), 6.40-6.37 (d, *J* = 18Hz, 1H), 2.06 (s, 8H), 2.05 (s, 4H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 160.9, 159.2, 130.6, 128.3, 128.1, 126.6, 123.9, 123.8, 115.6, 115.5, 115.4, 72.1, 67.6, 23.4, 23.2, 22.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 3.5 (1B, *-B*(*9*)-CH), *-*1.4 (1B, *-B*(*8*)-CH), *-*4.5 (2B), *-*8.7 (2B), *-*9.9 (2B), *-*11.1 (5B); HRMS: calculated for C₁₂B₁₀H₂₂F (M⁺+H) 293.2699; found: 293.2703.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.81-7.61 (m, 9H), 7.46-7.39 (m, 5H), 6.91-6.88

(d, J = 18Hz, 1H), 6.77-6.74 (d, J = 18Hz, 1H), 6.57-6.54 (d, J = 18Hz, 1H), 6.48-6.45 (d, J = 18Hz, 1H), 2.07 (s, 9H), 2.06 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150MHz, CDCl₃, *ppm*): δ 144.5, 140.1, 138.9, 133.7, 132.9, 132.8, 128.0, 127.9, 127.8, 127.6, 127.5, 126.0, 125.9, 125.5, 125.4, 123.6, 123.5, 72.0, 67.4, 23.4, 23.2, 22.5; HRMS: calculated for C₁₆B₁₀H₂₅ (M⁺+H) 325.2953; found: 325.2954.

A separable B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.6.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 6.88-6.85 (d, J = 18Hz, 1H), 6.25-6.22 (d, J = 18Hz, 1H), 2.58-2.54 (q, J = 6Hz, 2H), 2.04 (brs, 6H), 1.07-1.05 (t, J = 6Hz, 3H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 204.7, 138.5, 72.5, 32.3, 23.3, 22.6, 8.2; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 1.7 (1B, -*B*(9)-CH), -5.2 (2B), -8.9 (2B), -10.3 (5B); HRMS: calculated for C₉B₁₀H₂₃O (M⁺+H) 255.2746; found: 255.2747.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 6.98-6.95 (d, J = 18Hz, 1H), 6.40-6.37 (d, J = 18Hz, 1H), 2.61-2.58 (q, J = 6Hz, 2H), 2.04 (s, 6H), 1.10-1.08 (t, J = 6Hz, 3H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 201.4, 139.4, 72.6, 32.5, 23.2, 8.1; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -3.1 (1B, -*B*(8)-CH), -4.9 (2B), -8.9 (1B), -9.8 (1B), -10.1 (3B), -11.1 (2B); HRMS: calculated for C₉B₁₀H₂₃O (M⁺+H) 255.2744; found: 255.2747.

An inseparable mixture of B8 and B9 isomers was obtained. The ratio of B8/B9 is about 1:1.4.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.20-7.17 (d, J = 18Hz, 1H), 7.06-7.03 (d, J = 18Hz, 1H), 5.33-5.30 (d, J = 18Hz, 1H), 5.23-5.20 (d, J = 18Hz, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (brs, 12H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 168.1, 141.2, 140.4, 72.1, 67.8, 23.3, 23.1, 22.5, 20.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 1.6 (1B, -*B*(9)-CH), -3.3 (1B, -*B*(8)-CH), -4.9 (2B), -9.0 (2B), -10.3 (5B), -11.4 (3B); HRMS: calculated for C₈B₁₀H₂₁O₂ (M⁺+H) 257.2541; found: 257.2539.

Copies of ¹H NMR, ¹³C{¹H} NMR, ¹¹B NMR and ¹¹B{H} NMR:

WJ-143-H

 $\begin{array}{c} & 0.08 \\ & 0.02 \\ 0.01 \end{array}$

WJ-286-C

247103	400010	20421044206	2
667766	0-44800	90010	2
24.23.33.39.	4.50.00.80.80	28.228.228.228.228.228.228.228.228.228.	ŝ
222222			÷

210 200 190 180 170	-160 150 140 130 120 110 100		

----0. 80 ----3. 63 -----9. 53 -----10. 66

₩Ј-286-В-Н

 139.96 138.84 128.38 128.38 126.16 126.12 126.12 126.12	82. 77 82. 37 78. 59 77. 21 76. 79	34. 72 34. 55 33. 87 33. 87 31. 94	-0. 02

, ,		· 1		1 1			1 1			· 1	1			1				· ·	· ·				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											fl (ppm)											

WJ-258-B

 ~ -6.10 -7.48 -9.01 -9.44 -9.44 -9.44 -11.69 -12.19 ----2. 11 ----1. 15

WJ-259-H

WJ-259-C	$ \begin{array}{c} & \begin{array}{c} & 139. \ 91 \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & 128. \ 35 \\ & 128. \ 28 \\ & 128. \ 15 \\ & 126. \ 15 \\ & 126. \ 12 \\ & 126. \ 12 \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$ \begin{array}{c} +\frac{77}{77} \cdot 21 \\ +\frac{77}{76} \cdot 70 \\ -\frac{71}{71} \cdot 73 \\ -\frac{71}{73} \\ -67 \cdot 20 \end{array} $	$ \begin{array}{c} $	0. 02
2d				

1	'			·	'		1	, , , ,	1	'		· 1	· 1	1	' 1								
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90)	80	70	60	50	40	30	20	10	0	-10)

-2.21-3.72-3.72-3.72-3.72-3.72-3.72-3.72-10.85-11.86-13.50

2f Me

 $<^{2, 33}_{2, 31}$

--0.01

88 2 2 8	00 05 04 04
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	ာ တံ့ဆံ့တဲ့တဲ့
<u></u>	<u> </u>
	YY

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)	70 60 50 40 30 20 10 0 -10

₩J-250-H

< 2.33 < 2.05 < 2.05 < 2.05

---0,00

WJ-250-B

I			1	' '		'	1	1			· 1		·	1	1				' '			- 1	1	1	
45	40	35	30	2	5	20	15		10	5	0 f1 (pp	m)	-5	-10	-15	-20	-	25	-3	0	-35		-40	-45	
₩Ј-303-х-Н

-2.05

-0,00

WJ-303-x-C

-158.81

-77.21 77.00 -76.79 -71.71 -----0.02

WJ-303-x-B

WJ-303-х-В-Н

WJ-303-s-H

McO

2h-B9

 $\bigwedge_{6,15}^{6,81} \bigwedge_{6,50}^{6,81} \bigwedge_{6,50}^{6,81}$

Me

∕ \ 0.07 / 0.00

MeO

Me

 $\begin{array}{c} 77.21 \\ 77.99 \\ 76.79 \\ --71.92 \\ --67.07 \end{array}$

 ~ 23.39 ~ 22.46

Me 2h-B9

منه سوم و دو و منه المربوب و مربوب و مربوب و مربوب و مربوب و منه بسوم و منه و منه و منه و منه و منه و منه و من منه سوم و دو و منه و مربوب و منه و منه منه و	, lå e blar per ut se skala de la se sta kan stilleren sta kan skala se se skala se skala se skala se skala se N 1 av en se kan se skala stilleren skala stilleren skala se skala se skala se skala se skala se skala se skal	n ar feilige frei her se den sen feilige staat op de staat op van de staat de bester van de de bester de staat Net 't opgevelken van de staat gewone progenerie geverken op van de staat op de van de staat geverken op oor st	y name, foi faile for dealth a faile an an far ha faile an faile da an faile an faile an faile an faile. An faile an faile faile faile an faile a
210 200 190 180 170 160 150 140 130	120 110 100 90 80 f1 (ppm)	0 70 60 50 40 30	20 10 0 -10

WJ-303-s-B

-----3. 49

WJ-303-s-B-H

--3.48--4.75--5.54---5.54---9.90----10.65

	1			1					1			1			1			1	-			Т	_		-		-
40	9	35	3	30	25	20	15	10		5		0		-5		-10	-15	-20		-25	-	-30		-35	-	-40	
											f1	(ppm))														

₩J-284-H

 $\begin{array}{c} 551 \\ 550 \\ 550 \\ 511 \\ 526 \\ 526 \\ 511 \\$

6.83 6.83 6.83 6.81 6.81 6.83 6.33 6.33 6.33 6.33 6.33

88

< 3.84 < 3.82 3.82

 $<_{0.01}^{0.01}$

WJ-284-C	156. 47	[34. 22 [33. 09 [28. 17 [26. 5] [26. 5] [20. 47 [20. 47]	110.90	77. 21 77. 20 76. 79 71. 88 57. 05	55. 50	23. 37 23. 16 22. 45	
							1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)	0 -10

₩Ј-235-Н

-----3.04

-1.81-4.90--9.09-10.30-11.42

1												1		1							
45	40	35	30	25	20	15	10	5	01	0	`	-5	-10	-15	-20	-25	-30	-35	-40	-2	45
									ŤΙ	(ppm	1)										

₩Ј-237-В

----0.00

 $<^{2.05}_{2.05}$

														·								
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

₩Ј-238-В-Н

 $\begin{array}{c} --3.43 \\ --3.43 \\ --1.43 \\ --4.91 \\ --4.91 \\ --4.91 \\ --4.91 \\ --10.32 \\ --11.45 \end{array}$

WJ-248-C

→ 160.88 → 159.23

WJ-248-B

₩Ј-248-В-Н

		1	1		· 1	1				1					1		· 1		1					
45	40	35	3	0	25	20	15	10	5		0	-5	-	-10	-	15	-20)	-25	-30	-3	5	-40	
										f1 (ppm)													

 $<_{2.06}^{2.07}$

WJ-255-C

₩Ј-255-В-Н

 ~ -8.61 ~ -9.29 ~ -9.87 ~ -10.61 — 3. 33 — -1. 51

₩Ј-267-Х-В

--3.09--4.90--8.99--9.82--10.13--11.12

WJ-267-S-B

₩Ј-267-Ѕ-В-Н

-1.68-5.56-5.56-9.88-10.68

P

WJ-269-C

 ~ 141.24 ~ 140.41

Т f1 (ppm) -10 WJ-269-B

-9.04-9.86-10.31-11.40

₩Ј-269-В-Н

