SUPPORTING INFORMATION

Bacterial surface display of metal binding peptides as whole-cell biocatalysts for 4-nitroaniline reduction

Dong-Yu Tsai, Yi-Jung Tsai, Chia-Ho Yen, Chun-Yu Ouyang, and Yi-Chun Yeh* Department of Chemistry, National Taiwan Normal University

Materials and methods

Bacterial strains, growth conditions, and cloning

R. eutropha cells were cultured overnight at 30°C in lysogeny broth (LB) or H3 medium with shaking at 200 rpm. *E. coli* cells were incubated in lysogeny broth or M9 medium at 37°C (250 rpm). Strains, plasmids, primers, and construct details are listed in Table S1, S2 and S3.

Analysis of RFP localization by fluorescence microscopy

For localization studies, the overnight *E. coli* culture was diluted in LB media for 3 h until the OD_{600} reached 0.6. Then, 0.2% arabinose was used to induce expression of fluorescent protein fusions for 5 h. Similarly, *R. eutropha* strains were induced for 15 h with 0.2% arabinose. Cells were immobilized using a thin layer of 1% agarose in PBS medium. Phase contrast and fluorescence microscopy images were obtained using a Zeiss Axio A1 Microscope with an EC Plan-Neofluar 100x/1.30, and oil PH3 objective.

Synthesis of nanoparticles

The gold nanoparticles were synthesized by citrate reduction of HAuCl₄.¹ The HAuCl₄ solution (1.0 mM, 250 mL) was boiled, and added sodium citrate tribasic hydrate (38.8 mM, 25 mL) rapidly for 15 minutes until color change to deep red. The size of Au nanoparticles was determined by TEM analysis (JEOL JEM-1200 EXII). The absorption of Au nanoparticles solution was recorded by Multi-Mode Microplate Reader (BioTeK). The concentration of the Au nanoparticles was determined using an extinction coefficient of ca. 2.0×10^8 M⁻¹cm⁻¹ at 520 nm from Beer's law.²

Analysis of binding affinity of various surface display systems by gold binding peptide

R. eutropha strains were induced to express gold binding peptides. The induced cells were incubated with freshly prepared Au nanoparticles solution for 2 h at 28°C. The

cell pellets were collected by centrifugation (12,225 g, 1 min) and washed three times with PBS buffer. The cells were dropped on the copper grid and stained with 2% phosphotungstic acid for 10 seconds for TEM analysis.

Biosynthesis of Au and Pt nanoparticles

The strains were diluted and induced to express the metal binding peptides. The HAuCl₄•3H₂O (Acros organics) or H₂PtCl₆•H₂O (Acros organics) solution was then added into the culture (final concentration: 1 mM), and incubated for 1 h. The cell pellets were collected by centrifugation (12,225 g, 1 min) and resuspended in PBS buffer. The sample was dropped on the copper grid for TEM analysis. *E. coli* and *R. eutropha* cells were incubated for 18 h and 26 h in M9 and H3 media for UV-vis spectrum analyses. Energy dispersive spectroscopy (EDS) was used to identify the elemental composition of samples. To get the sample for SEM/EDS analysis, the aforementioned cells with nanoparticles were lyophilized by VirTis Freeze Dryer 5SL. EDS was analyzed by using JEOL JSM-7600F Field Emission Scanning Electron Microscope with INCA X-Max EDS.

Reduction of 4-nitroaniline to 4-aminoaniline

The cell pellets with metal NPs were collected by centrifugation (4,293 g, 1 min), and washed three times with distilled deionized water (DDW). The cells binding Au or Pt nanoparticles on the surface were used as catalysts for the reduction of 4-nitroaniline by NaBH₄. 100 μ L mixtures of methanol and DDW (1:1) containing 0.012 mg of 4-nitroaniline (final concentration: 0.9 mM), 0.78 mg cell pellets (wet weight), and 0.34 mg NaBH₄ (final concentration: 90 mM) were analyzed. Absorption spectra were measured by UV-vis spectrophotometer (Hewlett-Packard, 8453) and Multi-Mode Microplate Reader. Kinetic analyses were generated by measuring the decrease of absorbance at 385 nm.

Strains	Relevant genotype	Construction and source
Ralstonia	Wild type	DSM 428
eutropha H16		
pYCY_281	R. eutropha	pYCY_037 conjugated
	pBAD-rfp bbr	into R. eutropha H16
pYCY_052	R. eutropha	pYCY_038 conjugated
	pBAD-rfp-gbp bbr	into R. eutropha H16
pYCY_067	R. eutropha	pYCY_063 conjugated
	pBAD-fhuA-gbp bbr	into R. eutropha H16
pYCY_107	R. eutropha	pYCY_027 conjugated
	pBAD-fhuA-rfp bbr	into R. eutropha H16
pYCY_051	R. eutropha	pYCY_039 conjugated
	pBAD-fhuA-rfp-gbp bbr	into R. eutropha H16
pYCY_060	R. eutropha	pYCY_049 conjugated
	pBAD-ompA-gbp bbr	into R. eutropha H16
pYCY_080	R. eutropha	pYCY_082 conjugated
	pBAD-ompA-rfp bbr	into R. eutropha H16
pYCY_079	R. eutropha	pYCY_081 conjugated
	pBAD-ompA-rfp-gbp bbr	into R. eutropha H16
pYCY_068	R. eutropha	pYCY_007 conjugated
	pBAD-ss'-rfp-igA bbr	into R. eutropha H16
pYCY_073	R. eutropha	pYCY_071 conjugated
	pBAD-ss'-gbp-igA bbr	into R. eutropha H16
pYCY_303	R.eutropha	pYCY_294 conjugated
	pBAD-ss-lpp-ompA _{46~159} -rfp bbr	into R. eutropha H16
pYCY_315	R.eutropha	pYCY_297 conjugated
	pBAD-ss'-gbp-rfp-igA bbr	into R. eutropha H16
pYCY_323	R.eutropha	pYCY_319 conjugated
	pBAD-ss-lpp-ompA _{46~159} -rfp-gbp	into R. eutropha H16
	bbr	
pYCY_324	R.eutropha	pYCY_316 conjugated
	pBAD-ss-lpp-ompA _{46~159} bbr	into R. eutropha H16
pYCY_360	R. eutropha	pYCY_320 conjugated
	pBAD-ss-lpp-ompA _{46~159} -gbp bbr	into R. eutropha H16
pYCY_399	R. eutropha	pYCY_393 conjugated
	pBAD-ss'-s7-igA bbr	into R. eutropha H16

Table S1 Bacterial strains used in this study

Table S1 (continued)		
Strains	Relevant genotype	Construction and source
<i>E. coli</i> DH5α		
pYCY_038	E. coli	pYCY_038 transformed
	pBAD-rfp-gbp bbr	into <i>E. coli</i> DH5α.
pYCY_039	E. coli	pYCY_039 transformed
	pBAD-fhuA-rfp-gbp bbr	into <i>E. coli</i> DH5α.
pYCY_082	E. coli	pYCY_082 transformed
	pBAD-ompA-rfp bbr	into <i>E. coli</i> DH5α.
pYCY_081	E. coli	pYCY_081 transformed
	pBAD-ompA-rfp-gbp bbr	into <i>E. coli</i> DH5α.
pYCY_294	E. coli	pYCY_294 transformed
	pBAD-ss-lpp-ompA _{46~159} -rfp bbr	into <i>E. coli</i> DH5α.
pYCY_297	E. coli	pYCY_297 transformed
	pBAD-ss'-gbp-rfp-igA bbr	into <i>E. coli</i> DH5α
pYCY_393	E. coli	pYCY_393 transformed
	pBAD-ss'-s7-igA bbr	into <i>E. coli</i> DH5α.

Table S2 Plasmids used in this study

Plasmids	Relevant genotype	Construction and source
pYCY_037	pBBRMCS plasmid with	
	pBAD-rfp, Kan ^R	
pBbE5k-rfp		Lee TS et al., 2011^3
pYCY_004	pBBRMCS plasmid with	
	pTrc-ss'-gbp-igA, Kan ^R	
pYCY_033	pBbE5K plasmid with	PCR fragments were
	rfp-gbp, Kan ^R	amplified with primers 11
		and 12, using pYCY_037
		as a template. The PCR
		products were treated with
		NdeI and BamHI, and
		cloned into plasmid
		pYCY_020.
pYCY_038	pBBRMCS plasmid with	rfp-gbp fragments were
	pBAD-rfp-gbp, Kan ^R	treated with EcoRI and
		BamHI from pYCY_033,
		and cloned into plasmid

		рҮСҮ_037.
Plasmids	Relevant genotype	Construction and source
pYCY_013	pBBRMCS plasmid with <i>pBAD-fhuA, Kan^R</i>	PCR fragments were amplified with primers 09 and 10, using pYCY_027 as a template. The PCR products were treated with EcoRI and XhoI, and cloned into plasmid pYCY_037.
рҮСҮ_063	pBBRMCS plasmid with <i>pBAD-fhuA-gbp, Kan^R</i>	<i>gbp</i> fragments were amplified with primers 35 and 36 by annealing. The <i>gbp</i> fragments were treated with NdeI and BamHI, and cloned into plasmid pYCY_027.
pYCY_027	pBBRMCS plasmid with pBAD-fhuA-rfp, Kan ^R	Yeh YC et al 2013 ⁴
рҮСҮ_039	pBBRMCS plasmid with pBAD-fhuA-rfp-gbp, Kan ^R	PCR fragments were amplified with primers 11 and 12, using pYCY_037 as a template. The PCR products were treated with NdeI and BamHI, and cloned into plasmid pYCY_027.
рҮСҮ_049	pBBRMCS plasmid with <i>pBAD-ompA-gbp, Kan^R</i>	 <i>ompA</i> fragments were amplified with primers 23 and 24, using <i>E. coli</i> colony as a template. The PCR products were treated with NdeI and BamHI, and cloned into plasmid pYCY_037.

Plasmids	Relevant genotype	Construction and source
pYCY_082	pBBRMCS plasmid with <i>pBAD-ompA-rfp, Kan^R</i>	PCR fragments were amplified with primers 41 and 42, using pYCY_049 as a template. The PCR products were treated with NdeI and BgIII, and cloned into plasmid pYCY_037.
pYCY_081	pBBRMCS plasmid with pBAD-ompA-gbp-rfp, Kan ^R	PCR fragments were amplified with primers 40 and 42, using pYCY_049 as a template. The PCR products were treated with NdeI and BgIII, and cloned into plasmid pYCY_037.
pYCY_007	pBBRMCS plasmid with <i>pBAD-ss'- rfp-igA</i> , Kan ^R	
pYCY_071	pBBRMCS plasmid with <i>pBAD-ss'-gbp-igA</i> , <i>Kan^R</i>	<i>pBAD</i> fragments were treated with PstI and EcoRI from pYCY_037, and cloned into plasmid pYCY_004.
pYCY_292	pBBRMCS plasmid with pBAD-ompA _{46~159} -rfp, Kan ^R	PCR fragments were amplified with primers 165and 166, using pYCY_049 as a template. The PCR products were treated with BgIII and XhoI, and cloned into plasmid pYCY_037.
pYCY_294	pBBRMCS plasmid with pBAD-ss-lpp-ompA _{46~159} -rfp, Kan ^R	<i>ss-lpp</i> fragments were amplified with primers 167, 168, 169 and 170 by annealing. The <i>ss-lpp</i> fragments were treated

		with NdeI and BamHI,
		and cloned into plasmid
		pYCY_292.
Plasmids	Relevant genotype	Construction and source
pYCY_297	pBBRMCS plasmid with	<i>ss'-gbp</i> fragments were
	pBAD-ss'-gbp-rfp-igA, Kan ^k	amplified with primers
		171, 172, 173 and 174 by
		annealing. The <i>ss'-gbp</i>
		fragments were treated
		with Ndel and Smal, and
		cloned into plasmid
		pYCY_007.
pYCY_316	pBBRMCS plasmid with	PCR fragments were
	<i>pBAD-ss-lpp-ompA</i> _{46~159} , Kan ^R	amplified with primers
		180 and 166, using
		$p Y C Y_294$ as a template.
		treated with Dall and
		Vhal and alarad into
		nlogmid nVCV 027
nVCV 310	nBBBMCS plasmid with	PCR fragments were
prc1_517	nB4D-ss-Inn-own4 is iss-rfn-ghn	amplified with primers
	рылд-ss-ipp-отрл _{46~159} -тур-gop, Кар ^R	222 and 223 using
	Kun	nVCV 294 as a template
		The PCR products were
		treated with EcoRI and
		BamHI and cloned into
		plasmid pYCY_037
pYCY 320	pBBRMCS plasmid with	PCR fragments were
· _	$pBAD$ -ss-lpp-omp $A_{46\sim 159}$ -gbp,	amplified with primers
	Kan ^R	222 and 224, using
		pYCY 294 as a template.
		The PCR products were
		treated with EcoRI and
		BamHI, and cloned into
		plasmid pYCY_037.

Plasmids	Relevant genotype	Construction and source
pYCY_393	pBBRMCS plasmid with	PCR fragments were
	pBAD-ss'-s7-iga , Kan ^R	amplified with primers 4
		and 273, using
		pYCY_071 as a template.
		The PCR products were
		treated with SmaI and
		BamHI, and cloned into
		plasmid pYCY_071.

Table S3 Primers used in this study

Primers	Sequence
004_biobrick rv	cgttttatttgatgcctggagatcc
009_fhuA EcoRI fw	ttttgaattcaaaagatctagatcttttaagaaggagatataatggc
010_fhuA XhoI rv	ttttctcgagtcaagagtccggagaagagccagaaacgaagcggaa
011_rfp NdeI fw	ttttcatatggcgagtagcgaagacgttatcaaaga
012_rfp-gbp BamHI rv	ttttggatccttaagagtccggagaagagccagaaacagcaccggtgga
023_ ompA NdeI fw	ttttcatatgaaaaagacagctatcgcgattgcagt
024_ompA159 gbp	ggatccttaagagtccggagaagagccagaaaccccggggttgtccggac
SmaI BamHI rv	g
035_gbp oligo NdeI/BamHI	tatggtttctggctcttctccggactcttaag
036_gbp oligo com	gateettaagagteeggagaagageeagaaacea
NdeI/BamHI	
040_ompA-gbp rfp NdeI rv	ttttcatatgagagtccggagaagagccagaa
041_ompA-rfp NdeI rv	ttttcatatggttgtccggacgagtgccgatg
042_ompA-gbp-rfp BglII	ttttagatcttttaagaaggagatataatgaaaaagacagctatcgcgattg
fw	
111_s7 oligo NdeI/XhoI	tatgtcgtcctttccgcagccgaactaac
112_s7 oligo NdeI/XhoI	tcgagttagttcggctgcggaaaggacgaca
165_ompA(46-159)BglII	ttttagatcttttaagaaggagatatagctagctctagaaacccgtatgttggctt
fw	tgaaatg
166_ompA(46-159)XhoI rv	ttttctcgaggttgtccggacgagtgccg
167_ss-lpp oligo	ctagcatgaaagctactaaactggtactgggcgcggtaatcctgggttctact

NheI/BamHI 5'-1

168_ss-lpp oligo

ctgctggcaggttgctccagcaacgctaaaatcgatcagt

NheI/BamHI 5'-2

Primers	Sequence
169_ss-lpp oligo	ctagactgatcgattttagcgttgctggagcaacctgccagcagagtagaacc
NheI/BamHI 3'-1	
170_ss-lpp oligo	caggattaccgcgcccagtaccagtttagtagctttcatg
NdeI/BamHI 3'-2	
171_ss'-gbp oligo	tatgaaatacctgctgccgaccgctgctgctggtctgctgctcctcgctgccc
NdeI/SmaI 5'-1	a
172_ss'-gbp oligo	gccggcgatggccgtttctggctcttctccggactctccc
NdeI/SmaI 5'-2	
173_ss'-gbp oligo	gggagagtccggagaagagccagaaacggccatcgccggctgggcagc
NdeI/SmaI 3'-1	gagg
174_ss'-gbp oligo	agcagcagaccagcagcagcggtcggcagcaggtatttca
NdeI/SmaI 3'-2	
180_ss-lpp BglII fw	ttttagatcttttaagaaggagatatacatatgaaagctactaaactggtactgg
	gc
222_ss-lpp EcoRI fw	ttttgaattetttaagaaggagatatacatatgaaagetactaaactggtactgg
	gc
223_rfp-gbp BamHI rv	ttttggatccttaagagtccggagaagagccagaaacagcaccggtggagt
	gacgac
224_ompA-gbp BamHI rv	ttttggatccttaagagtccggagaagagccagaaacgttgtccggacgagt
	gccgat
237_ompA BamHI rv	ttttggatccttacccggggttgtccggac
273_s7 SmaI fw	ttttcccgggtcgtcctttccgcagccgaacggttctggttctaccatggggag

Table S4 The number of gold-nanoparticles labeling observed on cell surface

Figure S1 Schematic representation of the constructs used in this work. The arabinose-inducible (A) RFP only, (B) FhuA-RFP, (C) $OmpA_{1\sim159}$ -RFP, (D) ss (signal-sequence of Lpp)-Lpp-OmpA_{46~159}-RFP, and (E) ss' (signal-sequence of pelB)-RFP-IgA expression.

Figure S2 Schematic representation of the constructs used in this study. The goldbinding-peptide (GBP) is fused with surface-display-carrier-RFP.

R. eutropha

Figure S3 Fluorescence micrograph of *R. eutropha* expressing RFP-GBP and surface display carrier-RFP-GBP (Scale bar: 2 µm).

Figure S4 Characterization of Au nanoparticles synthesized for GBP labeling. (A) TEM image of Au nanoparticles, and (B) UV/Vis spectrum.

Figure S5 The representative TEM images at a lower magnification of the *E. coli* and *R. eutropha* cells displaying (A)(B) Au and (C)(D) Pt NPs (Scale bar: $1 \mu m$).

Figure S6 UV-vis spectra of the gold NPs synthesized by (A) *E. coli* (B) *R. eutropha* expressing GBP-IgA.

Figure S7 Histograms of size distribution analysis of Au and Pt NPs from (A) Figure 3A, (B) Figure 3B, (C) Figure 3C, and (D) Figure 3D.

Figure S8 EDS analysis of Au (A and B) and Pt (C and D) nanoparticles synthesized by a recombinant strain of (A, C) *E. coli* and (B, D) *R. eutropha*.

Figure S8 (continued)

Figure S8 (continued)

Figure S8 (continued)

Figure S9 The comparison of rate constants for the reduction of 4-nitroaniline by wild type *E. coli* and metal binding peptide-IgA cells anaerobically treated with 1mM of Au^{3+}/Pt^{4+} .

gure S10 The rate constants of the *E. coli* AuNP whole-cell biocatalyst for the reduction of 4-nitroaniline for five rounds of reuse (efficiency is relative to the rate constant of the first round).

References:

- 1. G. Frens, *Nature Physical Science*, 1973, 241, 20-22.
- 2. J.-W. Jian and C.-C. Huang, *Chemistry A European Journal*, 2011, 17, 2374-2380.
- 3. T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee and J. D. Keasling, *Journal of biological engineering*, 2011, 5, 12.
- 4. Y.-C. Yeh, J. Muller, C. Bi, N. J. Hillson, H. R. Beller, S. R. Chhabra and S. W. Singer, *Chemical Communications*, 2013, 49, 910-912.