Supplementary Information

Detection of Copper (II) and Aluminium (III) by a new bis-benzimidazole Schiff base in aqueous media *via* distinct routes

Ashish Kumar, Amit Kumar, Mrigendra Dubey, Arnab Biswas and Daya Shankar Pandey*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi - 221 005 (U.P.), India

Table of Contents:	Pages
1. Experimental procedures & results and discussion	S2-S3
2. Fig. S1, ¹ H and ¹³ C NMR spectra of BBA	S4
3. Fig. S2, ¹ H and ¹³ C NMR spectra of H_3L	S5
4. Fig. S3, ESI-MS of BBA and H ₃ L	S6
5. Fig. S4, Unit cell crystal packing and planar difference for H_3L molecule	S7
6. Fig. S5, Space-fill view along ' c ' direction and H-bonding interactions	S8
7. Fig. S6, UV/vis spectra of BBA only, and with tested cations	S9
8. Fig. S7, UV/vis spectra for H_3L showing mutual interference Cu^{2+} and Al^{3+}	S9
9. Fig. S8, Fluorescence spectra for BBA and H_3L	S10
10. Fig. S9, Fluorescence titration spectra for H_3L at c , 1.0 x 10 ⁻⁵ M	S10
11. Fig. S10, Effect of Al^{3+} on fluorescence spectra of BBA	S11
12. Fig. S11, Job's plot for H_3L with Cu^{2+} and Al^{3+} from emission data	S11-12
13. Fig. S12, Benesi-Hildebrand plots of H_3L for Al^{3+}	S12
14. Fig. S13, pH experiments on H_3L vs HCl (0.1 M)	S13
15. Fig. S14, Expanded view of ¹ H NMR spectra for H_3L and BBA	S14
16. Fig. S15, ¹ H NMR of H_3L showing deuterium exchange	S15
16. Fig. S16, ESI-MS of 1 and 2	S16
17. Fig. S17, Optimized structures of complex 1 and 2	S17
18. Fig. S18, Powder X-ray diffractograms of H ₃ L, 1 and 2	S17
19. Table S1, List of bond lengths and bond angles for H_3L	S18
20. References	S19

Experimental details:

General procedures. Elemental analyses on samples were performed in the Micro Analytical Laboratory of SAIF, Central Drug Research Institute (CDRI) Lucknow. IR and UV/vis spectra were acquired on PerkinElmer Spectrum Version 10.03.05 FT-IR and Shimadzu UV-1601 spectrophotometers, respectively. ¹H (300 MHz) and ¹³C (75.45 MHz) NMR spectra were acquired at room temperature (rt) on a JEOL AL300 FT-NMR spectrometer using tetra-methylsilane $[Si(CH_3)_4]$ as an internal reference. Fluorescence spectra were obtained in methanol water mixture (MeOH/H₂O, 9:1, v/v) on a PerkinElmer LS-55 Fluorescence Spectrometer at rt. Electrospray ionization mass spectrometric (ESI-MS) measurements were made on a THERMO Finningan LCQ Advantage Max ion-trap mass spectrometer. Limit of detection (LOD) were evaluated using linear calibration plots of quantitative fluorescence response for H_3L vs. Cu^{2+} and Al^{3+} (for the band at 485 and 466 nm, respectively). It has been calculated as $3\sigma/s$, where σ is the standard deviation of the blank signal and 's' is the slope of corresponding linear calibration plot. Quantum chemical calculations have been performed using a hybrid version of DFT method, namely B3LYP.¹ Basis set 6-31G** was used for C, H, N and O, while LANL2DZ for Cu and Al which combines quasi-relativistic effective core potentials with a valence double basis-set.² Geometry optimization and frequency calculations (to verify a genuine minimum energy structure) for H_3L , complex 1 and 2 were performed using Gaussian 09 programme.³

UV/vis and fluorescence studies. Stock solution of BBA and H_3L (1.0 x 10⁻³ M) were prepared in MeOH/H₂O (9:1; v/v) and their diluted solutions were used for UV/vis and fluorescence studies. Stock solutions of various metal ions *viz*. Na⁺, K⁺, Mg²⁺, Ca²⁺, Fe³⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Ag⁺, Zn²⁺, Cd²⁺, Hg²⁺, Al³⁺ and Pb²⁺ (*c*, 1.0 × 10⁻¹ M) were prepared by dissolving nitrate salts (NO₃⁻) of respective metals in triply distilled water and used after required dilutions (*c*, 1.0 × 10⁻² M, 1.0 × 10⁻³ M). In a typical UV/vis or fluorescence titration experiment, solution of BBA/H₃L was taken in a quartz cuvette (3.0 mL; path length, 1 cm) and treated gradually with dilute solution of the metal ions with the help of a micropipette. Observed spectral changes were noted as a function of equivalent of metal ions after ~1 min. of each addition and experiments were repeated thrice.

X-ray structure determinations. Crystals suitable for single crystal X-ray diffraction analyses were obtained from DCM/MeOH (v/v, 1:1) solution of H_3L . The crystal was

mounted on a glass fibre. All the geometric and intensity data were collected at 293 K on a Rigaku Saturn 724+ CCD diffractometer with a fine-focus sealed tube Cu-K_{α} (λ = 1.54184 Å) X-ray source with increasing ω (width of 0.3 per frame) at a scan speed of either 3 or 5 s/frame. After initial solution of the reflection data, refinement was performed by WinGX environment using direct methods (SHELXL 97) and full-matrix least squares on F^2 (SHELX 97).⁴ All non-hydrogen atoms were refined anisotropically and hydrogen atoms geometrically fixed and refined as per the riding model. Powder X-ray diffraction data was collected on a Bruker Eco D8 Advanced X-ray diffractometer between angle $2\theta = 5-60^{\circ}$.

Results and discussion

Deuterium ion exchange experiment on H₃L. To investigate the interactions between benzimidazole group and Al^{3+} a hydrogen-deuterium exchange in H₃L (dmso-*d*₆) in presence of blank D₂O (only a trace amount) has been monitored through ¹H NMR experiment. The experiment displayed a feeble loss for –NH signal and a drastic loss for –OH signal after immediate addition of D₂O only. With increase in time, it has been noted that shortly after addition of D₂O, the –OH signal disappeared almost completely while the –NH signal persists over a significant period of time (~1 h, including time for scanning). This substantiates more stability of –NH than –OH under biased deuterium exchange conditions in the solution. In other words, it significantly proves the interaction between Al^{3+} and –NH of benzimidazole because, in the H₃L vs. Al^{3+} titration, signal for –NH was found to be disappeared prior to the signal for –OH which should not occur if deuterium exchange dominates over interaction involved with Al^{3+} . Therefore, it has been concluded from the ¹H NMR studies that drastic loss of resonance for –NH proton occurred predominantly due to the presence Al^{3+} and also that benzimidazole is more reactive towards Al^{3+} .

Fig. S1 (a) ¹H NMR and (b) ¹³C NMR spectra of 3,5-*bis*(1H-benzimidazol-2-yl)aniline (**BBA**).

Fig. S2 (a) ¹H and (b) ¹³C NMR spectrum of 2-(3,5-bis(1H-benzimidazol-2-yl)phenyl-iminomethyl)phenol (**H**₃**L**).

Fig. S3 (a) ESI–MS of BBA and (b) H₃L.

(a)

(b)

Fig. S4 (a) Crystallographic packing of H_3L . (a) Difference between the planes associated with both benzimidazole rings which are found to be 43.57°. This type of twisting may be a related to affect PET. (c) Extended structure of H_3L in crystallographic '*ab*' plane showing anti-parallel arrangement of subsequent units.

(a)

(b)

Fig. S5 (a) The anti-parallel arrangement of H₃L along crystallographic 'c' axis in 'ab' plane.
(b) Hydrogen bonding interactions associated with methanol solvent molecule.

Fig. S6 (a) UV/vis spectra of **BBA** (c, 1.0×10^{-5} M; MeOH/H₂O, 9:1, v/v) only, and in presence of several metal ions. (b) UV/vis spectra showing the effect of Al³⁺ (20.0 equiv) on **BBA**. Considerably large quantity of Al³⁺ needed has been attributed towards low sensitivity.

Fig. S7 UV/vis spectra of H_3L (*c*, 1.0×10^{-5} M; MeOH/H₂O, 9:1, v/v) showing mutual interference of Al³⁺ and Cu²⁺ respectively.

Fig. S8 Fluorescence spectra of H₃L and (b) BBA (c, 1.0×10^{-6} M; MeOH/H₂O, 9:1, v/v; *p*H ~7.2).

Fig. S9 Fluorescence titration spectra of H_3L at c, 1.0×10^{-5} M [MeOH/H₂O, 9:1, v/v] in presence of Al³⁺. It has been performed anonymously just to show clear *binary spectral behaviour* pertaining to the involvement of benzimidazole and salen interactions in a cumulative manner.

Fig. S10 Fluorescence titration spectra of **BBA** [c, 1.0×10^{-6} M; MeOH/H₂O, 9:1, v/v] only and in the presence of various metal ions (10.0 equiv). In presence of excess of Al³⁺ (~50 equiv) significant changes occurs confirming benzimidazole-Al³⁺ interactions.

Fig. S11 Job's plot analyses for the stoichiometric determination of (a) $H_3L + Cu^{2+}$ and (b) $H_3L + Al^{3+}$. Former shows 1:2 stoichiometry whereas latter exhibits 1:1 stoichiometric ratio between the probe and respective analytes.

(b)

Fig. S12 Benesi Hildebrand plot for $H_3L + Al^{3+}$ from the fluorescence spectral data considering 1:1 stoichiometry.

Fig. S13 (a) UV/vis and (b) Fluorescence experiments for H_3L with 0.1 M HCl solution to verify *p*H dependence. The experiment exhibited spectral changes which were ascribable to the deprotonation of H_3L but insignificant enough to pose any considerable interference in the detection of Al^{3+}/Cu^{2+} .

Fig. S14 (a) Partial ¹H NMR titration spectral overlay for H_3L *vs.* Al³⁺ showing significant chemical shifts for the benzimidazole protons. (b) ¹H NMR spectra for **BBA** showing significant shift of benzimidazole aromatic protons and complete disappearance of –NH signal in presence of Al³⁺.

Fig. S15 ¹H NMR spectrum of H_3L only (dmso- d_6) and in presence of traces of blank D_2O .

(a)

Fig. S16 ESI-MS of (a) complex **1** and (b) complex **2**. These exhibit a good agreement with their relevant isotopic patterns on comparison with their respective calculated data (insets).

Fig. S17 DFT optimized structures of (a) Cu^{II} –complex (1) and (b) Al^{III} –complex (2).

Fig. S18 Powder X-ray diffraction pattern of H_3L , complex 1 ($H_3L + Cu^{2+}$) and complex 2 ($H_3L + Al^{3+}$). Diffractograms for 1 and 2 are quite different from H_3L substantiating the formations of respective complexes. However, peak intensity for 1 are very diminished

showing its amorphous nature however for 2, a well defined crystalline structure is signified provided that some in-situ generated metal-salts after drying cannot be ruled out in the PXRD pattern of 2.5

N2—C5	1.357(4)	С10—С9	1.383(6)
N2-C11	1.377(5)	N3—C12	1.074(8)
N1C5	1.313(4)	N3-C12 ⁱ	1.074(8)
N1—C6	1.395(4)	С9—С8	1.392(7)
C1—C2	1.392(4)	C12—C12 ⁱ	1.411(16)
$C1-C2^{i}$	1.392(4)	C12—C13	1.619(11)
С2—С3	1.395(4)	C12—O1	1.735(10)
C2—C5	1.470(4)	O2—C17	1.415(5)
$C4-C3^{i}$	1.395(4)	O1—C14	1.192(9)
C4—C3	1.395(4)	C16-C15 ⁱ	1.377(7)
C4—N3	1.393(7)	C16—C15	1.377(7)
C11—C10	1.385(5)	C15—C14	1.371(8)
C11—C6	1.407(5)	C14—C13	1.365(10)
С6—С7	1.397(5)	C13—C14 ⁱ	1.365(10)
С7—С8	1.371(6)	C13—C12 ⁱ	1.619(11)
C5—N2—C11	107.2(3)	C12—N3—C4	138.9(4)
C5—N1—C6	104.9(3)	C12 ⁱ —N3—C4	138.9(4)
$C2-C1-C2^{i}$	121.2(4)	С10—С9—С8	122.0(4)
C1—C2—C3	119.1(3)	С7—С8—С9	121.7(4)
C1—C2—C5	118.5(3)	N3-C12-C12 ⁱ	48.9(4)
C3—C2—C5	122.4(3)	N3-C12-C13	113.1(6)
C3 ⁱ —C4—C3	119.4(4)	C12 ⁱ —C12—C13	64.2(3)
C3 ⁱ —C4—N3	120.3(2)	N3-C12-O1	176.2(7)
C3—C4—N3	120.3(2)	C12 ⁱ —C12—O1	134.5(3)
C4—C3—C2	120.6(3)	C13—C12—O1	70.4(4)
N2-C11-C10	132.3(3)	C14—O1—C12	96.2(7)
N2-C11-C6	105.2(3)	C15 ⁱ —C16—C15	119.7(7)
C10-C11-C6	122.5(4)	C16-C15-C14	119.3(8)
N1	113.4(3)	O1—C14—C13	98.2(6)
N1—C5—C2	123.4(3)	O1—C14—C15	139.9(12)
N2—C5—C2	123.2(3)	C13—C14—C15	121.9(9)
N1—C6—C7	130.8(3)	C14 ⁱ —C13—C14	118.0(8)
N1-C6-C11	109.4(3)	$C14^{i}$ — $C13$ — $C12^{i}$	95.2(4)
C7—C6—C11	119.8(3)	C14—C13—C12 ⁱ	146.9(6)
С8—С7—С6	117.7(4)	C14 ⁱ —C13—C12	146.9(6)
С11—С10—С9	116.2(4)	C14—C13—C12	95.2(4)
C12—N3—C12 ⁱ	82.2(9)	C12 ⁱ —C13—C12	51.7(6)

Table S1. Bond Lengths (Å) and Angles (°) for H_3L .

Symmetry transformation used to generate equivalent atoms: 0.5-x, y, 1-z.

'i' has been used to indicate identical atoms

References

- 1. L. J. Bartolottiand and K. Fluchick, *In Reviews in Computational Chemistry*; K. B. Lipkowitz and D. Boyd, Ed. VCH: New York, 1996, **7**, 187.
- (a) P. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R. Wadt and P. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
- 4. G. M. Sheldrick, *SHELXL-97, Program for X-ray Crystal Structure Refinement;* Göttingen University: Göttingen, Germany, 1997.
- X.-F. Shen, Y.-S. Ding, J. C. Hanson, M. Aindow and S. L. Suib, J. Am. Chem. Soc., 2006, 128, 4570.