Supplementary Information

Facile Fabrication of N-Doped Hierarchical Porous

Carbon@CNTsCoaxial Nanocable with High Performance for

Energy Storage and Conversion

Yuanyuan Li,^a Wei Xia,^b Ruqiang Zou,^b Jianan Zhang,^{*a,c} Zhimin Chen^a and Qun Xu^{*a}

^a College of Materials Science and Engineering, Zhengzhou University, Zhengzhou

450052 P. R. China

^b Beijing Key Laboratory of Advanced Battery Materials, Department of Materials
Science and Engineering, College of Engineering, Peking University, Beijing 100871,
P. R. China

^c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 P. R. China

*Corresponding authors: zjn@zzu.edu.cn (Jianan Zhang) and qunxu@zzu.edu.cn (Qun Xu)

1. Figures

Figure S1 TEM image of (a) CNTs. SEM image of (b) HPNCNTs, (c) S-600, (d) S-700, (e) S-900, (f) NCs.

Figure S2 Raman spectra of pristine CNTs, HPNCNTs, S-600, S-700 and S-900.

Figure S3 XPS survey spectra of CNTs and HPNCNTs, S-600, S-700 and S-900.

Figure S4 N1s XPS spectra of (a) S-600, (b) S-700, (c) HPNCNTs and (d) S-900.

Figure S5 (a) Galvanostatic charge/discharge curves at 1 Ag⁻¹. (b) Specific capacitances of HPNCNTs, NC-CNTs-PANI, NC-CNTs-PPy and CNTs electrodes at different current densities.

Figure S6 CV curves in N_2 -saturated (dashed curves) and O_2 -saturated (solid curves) solution with a sweep rate of 50 mV s⁻¹.

Figure S7 RDE polarization curves for (a) S-600, (b) S-700, (c) S-900, (d) NCs and (e) CNTs in O_2 -saturated solution at different rotation speeds. Scan rate: 10 mV s⁻¹. The inset shows the partial K-L plots derived from the RDE measurements of the sample.

2. Tables

Sample	C (at %)	N (at %)	O (at %)
Microporous RMF@CNTs	71.32	19.16	9.52
S-600	88.35	6.81	4.84
S-700	89.58	4.24	6.18
HPNCNTs	92.49	3.17	4.34
S-900	93.51	2.05	4.44

Table S1 Element content of HPNCNTs calcined at different temperatures.

Sample	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Micropore volume (cm ³ g ⁻	Pore size (nm)
CNTs	99.4	0.209	0.097	2.4
RMF@CNTs	228.6	0.223	0.193	2.1/4.0/15.8
HPNCNTs	663	0.393	0.268	1.9/2.8/13/22/51 .7

Table S2 Surface and pore related parameters from $N_{\rm 2}$ adsorption isotherms of samples.

Sample	BET specific surface area (m ² g ⁻¹)	Pore distribution (nm)	Pore Volume (cm ³ g ⁻¹)	Ref.
CNT/PANI	75	2		1
Polyaniline derived N doped carbon	388		0.071	2
HPNCNTS-0.5 derived from PANI	252			3
N-doped CNT derived from urea	388	3.5/8.0	0.55	4
N-doped porous carbon nanofibers	384.12	5.07	0.44	5
MF-CNT derived from melamine	403		0.174	6
N-doped carbon/CNT derived from PANI	197.01	0.5/0.7/1.3	0.163	7
HPNCNTs	663	1.9/2.8/13/22/51.7	0.293	This work

Table S3 Comparison of BET specific surface area and pore volume for different carbon-based material.

Samples	Electrolyte	Scan Rate	Specific capacitance (F g ⁻	Ref.
N-doped porous carbon nanofibers	6 M KOH	0.5 Ag ⁻¹	202	5
NCNT derived from melamine	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	1 mVs ⁻¹	167	6
N-doped carbon/CNT derived from PANI	6 М КОН	20mVs ⁻¹	205	7
CNTs/N-enriched carbon	1M H ₂ SO ₄		100	8
N-enriched carbon from melamine mica	6 М КОН	0.05Ag ⁻¹	198	9
N/C-MWNTs derived from melamine	1M H ₂ SO ₄	0.5 Ag ⁻¹	262	10
Nitrogen-doped hierarchical porous carbon	6 M KOH	0.2 Ag ⁻¹	260.3	11
CNT/carbon Core-shell nanocomposites	3 M H ₂ SO ₄	0.1 Ag ⁻¹	237	12
HPNCNTs	6 M KOH	0.2 Ag ⁻¹	284	This work

 Table S4 Comparison of capacitance data reported for different carbon-based materials.

References

- 1. L. Li, G. Li and B. An, *RSC Adv.*, 2014, 4, 9756.
- N. Gavrilov, I. A. Pašti, M. Mitrić, J. Travas-Sejdić, G. Ćirić-Marjanović and S. V. Mentus, *J. Power Sources*, 2012, 220, 306-316.
- 3. P. L. Kuo, C. H. Hsu, H. M. Wu, W. S. Hsu and D. Kuo, *Fuel Cells*, 2012, **12**, 649-655.
- 4. L. Chen, X. Cui, Y. Wang, M. Wang, F. Cui, C. Wei, W. Huang, Z. Hua, L. Zhang and J. Shi, *Chem.–An Asian Journal*, 2014, **9**, 2915-2920.
- 5. L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu and S.-H. Yu, *ACS Nano*, 2012, **6**, 7092-7102.
- 6. G. Lota, K. Lota and E. Frackowiak, *Electrochem. Commun.*, 2007, **9**, 1828-1832.
- 7. B. An, S. Xu, L. Li, J. Tao, F. Huang and X. Geng, *J. Mater. Chem. A*, 2013, **1**, 7222.
- 8. F. Béguin, K. Szostak, G. Lota and E. Frackowiak, *Adv. Mater.*, 2005, 17, 2380-2384.
- D. Hulicova Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu and G. Q. Lu, *Adv. Funct. Mater.*, 2009, 19, 1800-1809.
- 10. K.-S. Kim and S.-J. Park, J. Electroanal. Chem., 2012, 673, 58-64.
- 11. J. Zhou, Z. Zhang, W. Xing, J. Yu, G. Han, W. Si and S. Zhuo, *Electrochim. Acta*, 2015, **153**, 68-75.
- 12. Y. Yao, C. Ma, J. Wang, W. Qiao, L. Ling and D. Long, *ACS Appl. Mater. & Inter.*, 2015, **7**, 4817-4825.