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1. TEM characterization of graphene and Ni3C phase from RTP process

Fig. S1. High resolution TEM characterization of graphene and nickel carbide. (a) mono-

layer graphene, (b) bi-layer graphene, (c) few-layer graphene and (d) nickel carbide obtained 

from the RTP annealing process. 

Fig. S1 shows high resolution, medium-angle annular dark field STEM images of the 

graphene grown from RTP processes. Mono-layer, bi-layer and few-layer graphene were all 

characterized and observed. The intermediate phase of Ni3C in the RTP heating processes 

was also observed in the bright-field TEM image, as shown by the arrows in Fig. S1d.

2. Dependence of graphene quality on the RTP heating rate
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Fig. S2. Dependence of graphene quality on the RTP heating rate when the annealing 

temperature is set at 1100 °C. (a) ID/IG ratio plot as a function of heating rate. (b) 

Corresponding Raman spectra under different heating rates.  

Fig. S2 shows the dependence of graphene quality on the heating rate when the annealing 

temperature is set at 1100 °C. At the low heating speed of 1 °C/s, the Raman spectrum shows 
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a high ID/IG ratio which indicates the as-formed graphitic layer under this condition has a high 

level of lattice defects. As the heating rate increases, the ID/IG ratio decreases, suggesting 

improved graphene quality. However, when the heating rate increases above 15 °C/s, the 

ID/IG begins to increase indicating increased defects. Fig. S2 shows that the optimal heating 

rate for high-quality graphene growth is around 15 °C/s with an annealing temperature of 

1100 °C.

3. Dependence of graphene quality on the RTP annealing temperature

Fig. S3 shows the dependence of graphene quality (represented by ID/IG ratio) on the RTP 

annealing temperature with a heating rate of 15 °C/s. The ID/IG ratio decreases as the RTP 

annealing temperature increases, indicating improved graphene quality with an increased 

annealing temperature. 

1500 2000 2500 3000
 

  

Raman shift (cm-1)
850 900 950 1000 1050 1100

0.0

0.2

0.4

0.6

0.8

1.0

 

 

I D/
I G

Temperature (oC)

1050 oC

1000 oC

950 oC

900 oC

850 oC

1100 oC
Heating rate: 15 oC/s

In
te

ns
ity

 (a
.u

.)

a b

Fig. S3. Dependence of graphene quality on the RTP annealing temperature when the heating 

rate is set at 15 °C/s. (a) ID/IG ratio plot as a function of annealing temperature. (b) 

Corresponding Raman spectra under different annealing temperatures.

4. Theoretical calculation of Ni3C decomposition temperature and carbon diffusion 

length as functions of RTP heating rate
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a) Calculation of Ni3C decomposition temperature

The mathematic model used for the calculation of Ni3C decomposition as a function of the 

RTP heating rate was obtained from a previous study on Ni3C thermal decomposition in 

argon (Ar) environments.1 The equation is shown as follows:

(1)

ln (𝑅𝑇2𝑝) =‒ (
∆𝐸
𝐾𝐵𝑇𝑝) + 𝐴

where, Tp is the Ni3C decomposition peak temperature, R is the heating rate, ΔE is the 

activation energy for Ni3C decomposition, KB is the Boltzmann constant, and A is a constant. 

Table S1.  Experimental results of Ni3C thermal decomposition1

Heating Rate, 
R (oC/min) 5 10 20

Ni3C Decomposition Peak 
Temperature, Tp (oC) 400.15 415.05 424.85

Based on the Ni3C decomposition experimental results, as shown in Table S1, the ΔE and A 

can be calculated as 204 kJ/mol and 15.4, respectively. Therefore, the relationship between 

Ni3C decomposition peak temperature, Tp, and the heating rate, R, is established and is 

plotted in Fig. 5c.   

b) Calculation of carbon diffusion length

Based on Fick’s second law of diffusion, we have estimated the diffusion length of carbon 

during the RTP heating process. The mathematical model is shown in Equation 2.

(2)
𝐿= 2

𝑡'

∫
0

𝐷(𝑡)𝑑𝑡

where, L is the carbon diffusion length, and D(t) is the carbon diffusion coefficient. 

According to previous experimental measurements on carbon diffusion,2 the carbon diffusion 

coefficient in Ni can be derived as below: 



S5

(3)𝐷= 𝐷0𝑒𝑥𝑝( ‒ 𝐸/𝐾𝐵𝑇)

(4)𝑇= 300 + 𝑅𝑡'

where, D0 ≈ 0.1 cm2s-1, E ≈ 1.5 eV, T is the environment temperature, R is the heating rate, 

and t’ is the annealing time.

Based on the above Equations (2-4), we have calculated the carbon diffusion length before 

the beginning of Ni3C decomposition (an onset Ni3C decomposition temperature of 465 °C 

was used in this calculation). The plot of carbon diffusion length as a function of heating rate 

is shown in Fig. 5d. 

5. Weight loss measurements in RTP process

We have measured the weight loss in the RTP process using microbalance. Table S2 shows 

the measurement result. It is shown that about 30% weight loss of the Ni/C thin film was 

observed after only 2 min RTP annealing process at 1100 °C. The weight loss experiments 

further confirm the evaporation of Ni3C during the RTP annealing process.  

Table S2.  Weight loss measurement result.

Weight A:  Before 
Ni/C deposition

Weight B:  After 
Ni/C deposition

Weight C:  After RTP 
annealing process

Weight loss 
percentage (Ni/C)

9.1610 g 9.1637 g 9.1629 g 29.6 %
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6. Auger electron spectroscopy (AES) spectra of the compositional elements
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Fig. S4. Typical Auger electron spectroscopy (AES) spectra of each compositional elements 

including (a) Carbon, (b) Nickel, (c) Silicon, and (d) Oxygen during the AES depth profiling 

analyses of annealed Ni/C/SiO2 samples.

Fig. S4 shows the typical AES spectra of the compositional elements in analyzing the 

Ni/C/SiO2 samples. All the compositional elements have their characteristic AES peak 

positions and line shapes, enabling the quantitative analyses of the component concentrations 

in the AES depth profiling experiments. The peak fitting measures were obtained by the non-

linear-least-square fitting software (Thermo, Microlab 310F).
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