Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Significantly Enhanced Dielectric Properties and Energy Storage Density for High-*k* Cyanate Ester Nanocomposites Through Building Good Dispersion of Pristine Carbon Nanotubes in Matrix Based on *in-situ* Noncovalent Interaction with Phenolphthalein Poly(ether sulfone)

Lin Zhao, Li Yuan, Guozheng Liang,* and Aijuan Gu*

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Materials Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China

*To whom all correspondence should be addressed Tel: +86 512 65880967 Fax: +86 512 65880089 Email: lgzheng@suda.edu.cn (Guozheng Liang), ajgu@suda.edu.cn (Aijuan Gu),

S1. Nyquist plots and simulation results for MWCNT/CE and MWCNT/CE/cPES composites.

Figure. S1 Nyquist plots of complex impedance planes (hollow circle) and simulation results (solid lines) for MWCNT/CE (a) and MWCNT/CE/cPES (b) composites.

Filler ^{b)}	Filler loading	Polymer matrix ^{c)}	\mathcal{E}_{fc}	$tan\delta_{fc}$	Reference
EG-MWCNT	0.515 wt%	CE	393	22	[S1]
MWCNTs-OH	0.62 wt%	CE	30	>10	[S2]
MWCNTs	0.5 wt%	CE	306	0.21	[S3]
rGO	0.6 vol%	PVDF	100	2	[S4]
SiO ₂ coated rGO	1.49 vol%	P(VDF-CTFE)	25	0.45	[S5]
MWCNTs	2.5 vol%	PVDF	300	11	[S6]
HSiPA coated MWCNTs	1.26 wt%	EP	<100	0.015	[S7]
MWCNTs	25 vol%	PSF	58	0.05	[S8]
PPy coated MWCNTs	10 vol%	PS	44	0.07	[S9]
TiO ₂ coated TiB ₂	27 wt%	EP	407	1.5	[S10]
MWCNTs, cPES	0.89 wt%	CE	648	4.1	This work

Table S1. Key parameters of high-k polymer composites with low dielectric loss.^{a)}

a) The data of high-*k* composites are arranged. Some parameters not reported directly in the references are derived from the corresponding curves. ε_{fc} : dielectric constant at percolation threshold under 100 Hz. $tan\delta_{fc}$: dielectric loss at percolation threshold under 100 Hz.

- b) EG: Expanded graphite; MWCNTs: Multi-wall carbon nanotubes; rGO: reduced graphene oxide; HSiPA: Hyperbranched polyaniline; PPy: Polypyrrole; cPES: Phenolphthalein poly(ether sulfone); TiO₂: titanium dioxide; TiB₂: titanium diboride.
- c) CE: Cyanate ester resin; PVDF: Poly(vinylidene fluoride); P(VDF-CTFE): Poly(vinylidenefluoride-co-chlorotrifluoroethylene); EP: Epoxy resin; PSF: Polysulfone; PS: Polystyrene; PP: Polypropylene.

References

[S1] X. H. Zhang, G. Z. Liang, J. F. Chang, A. J. Gu, Carbon, 2012, 50, 4995.

[S2] C. F. Han, A. J. Gu, G. Z. Liang, L. Yuan, Composite, Part A, 2010, 41, 1321.

[S3] B. H. Wang, D. K. Qin, G. Z. Liang, A. J. Gu, L. M. Liu, L. Yuan, J. Phys. Chem. C, 2013, 117, 15487.

[S4] D. R. Wang, Y. Bao, J. W. Zha, J. Zhao, Z. M. Dang, *ACS Appl. Mater. Interfaces*, 2012, 4, 6273.

[S5] K. Han, Q. L, Z. Y. Chen, M. R. Gadinski, L. J. Dong, C. X. Xiong, Q. Wang, J. Mater. Chem. C, 2013, 1, 7034.

[S6] T. Zhou, J. W. Zha, Y. Hou, D. R. Wang, J. Zhao, Z. M. Dang, *ACS Appl. Mater. Interfaces*, 2011, **3**, 4557.

[S7] Z. X. Qiang, G. Z. Liang, A. J. Gu, J. Nanopart. Res., 2014, 16, 2391.

[S8] H. Liu, Y. Shen, Y. Song, C. W. Nan, Y. Lin, X. Yang, Adv. Mater., 2011, 23, 5104.

[S9] C. Yang, Y. Lin, C. W. Nan, Carbon, 2009, 47, 1096.

[S10] L. C. Gu, T. X. Wang, W. Zhang, G. Z. Liang, A. J. Gu, L. Yuan, RSC Adv., 2013, 3, 7071.