Supporting Information

Electrosynthesis and electrochromic properties of poly(amidetriarylamine)s containing triptycene units

Sheng-Huei Hsiao* and Yu-Ting Chiu

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan. E-mail: shhsiao@ntut.edu.tw

Monomer synthesis and characterization data

The synthesis of **T-TPA-C** was used as an example to illustrate the general synthetic route used to produce the triptycene bis(amide-triarylamine) monomers. A mixture of 0.328 g (0.7 mmol) of triptycene-bis(ether amine) **3**, 0.463 g (1.6 mmol) of 4-carboxytriphenylamine **(6)**, 0.05 g of calcium chloride, 0.7 mL of triphenyl phosphite, 0.2 mL of pyridine, and 0.7 mL of NMP was heated with stirring at 120 °C for 3 h. The resulting solution was poured slowly with stirring into 50 mL of methanol, giving rise to a powdery precipitate. The precipitated product was collected by filtration, washed repeatedly with methanol and hot water, and dried to afford monomer **T-TPA-C** as a pale yellow solid (yield = 92%); mp 263–264 °C. The IR spectrum of **T-TPA-C** exhibited characteristic amide absorption bands at 3300 cm⁻¹ (N–H stretch) and 1650 cm⁻¹ (C=O stretch). ¹H NMR (500 MHz, DMSO-*d*₆, δ , ppm): 5.82 (s, 2H, H_b), 6.68 (s, 2H, H_a), 6.90 (d, *J* = 9.0 Hz, 4H, H_e), 6.98 (d, *J* = 8.5 Hz, 4H, H_h), 7.02 (dd, *J* = 5.0 and 3.0 Hz, 4H, H_c), 7.12 (d, *J* = 7.5 Hz, 8H, H_i), 7.17 (t, *J* = 7.5 Hz, 4H, H_k), 7.38 (m, 12H, H_d + H_j), 7.75 (d, *J* = 9.0 Hz, 4H, H_f), 7.87 (d, *J* = 9.0 Hz, 4H, H_g), 10.10 (amide proton). ¹³C NMR (125 MHz, DMSO-*d*₆, δ , ppm): 47.04 (C⁴), 117.52 (C³), 117.78 (C¹), 120.06 (C¹⁴), 121.90 (C¹⁰), 123.88 (C⁷), 124.20 (C¹⁹), 125.11 (C¹⁷), 125.18 (C⁶), 129.02 (C¹³), 129.26 (C¹²), 129.70 (C¹⁸), 134.59 (C¹¹), 138.10 (C³), 144.49 (C⁵), 146.33 (C¹⁶), 146.97 (C²), 150.14 (C¹⁵), 157.21 (C⁸), 164.63 (amide carbon).

T-CBZ-C was synthesized from the condensation of triptycene-bis(ether amine) **3** with *N*-(4-carboxyphenyl)carbazole (**7**) by a similar synthetic procedure as that of **T-TPA-C**. The yield of **T-CBZ-C** was 90%; mp 146–147 °C. The IR spectrum of **T-CBZ-C** exhibited characteristic amide absorption bands at 3300 cm⁻¹ (N–H stretch) and 1643 cm⁻¹ (C=O stretch). ¹H NMR (500 MHz, DMSO- d_6 , δ , ppm): 5.87 (s, 2H, H_b), 6.73 (s, 2H, H_a), 7.00 (d, *J* = 9.0 Hz, 4H, H_e), 7.04 (dd, *J* = 5 and 3.5 Hz, 4H, H_c), 7.33 (t, *J* = 8.0 Hz, 4H, H_k), 7.39 (dd, *J* = 5 and 3.5 Hz, 4H, H_d), 7.46–7.51 (m, 8H, H_i + H_j), 7.83 (d, *J* = 8.5 Hz, 4H, H_h), 7.86 (d, *J*

= 9.0 Hz, 4H, H_f), 8.28 (d, *J* = 8.0 Hz, 4H, H_l), 8.30 (d, *J* = 8.5 Hz, 4H, H_g), 10.49 (amide proton). ¹³C NMR (125 MHz, DMSO-*d*₆, *δ*, ppm): 47.63 (C⁴), 110.15 (C¹⁸), 118.12 (C⁹), 118.45 (C¹), 120.90 (C¹⁹), 121.06 (C²⁰), 122.67 (C¹⁰), 123.48 (C²¹), 124.44 (C⁷), 125.75 (C⁶), 126.70 (C¹⁴), 126.87 (C¹⁷), 130.10 (C¹³), 134.05 (C¹²), 134.88 (C¹¹), 138.75 (C³), 140.13 (C¹⁵), 140.23 (C¹⁶), 145.04 (C⁵), 147.51 (C²), 157.77 (C⁸), 165.05 (amide carbon).

Similarly, **T-TPA-N** was prepared from the condensation of triptycene-bis(ether carboxylic acid) **5** with two equivalent amount of 4-aminotriphenylamine **(8)** in 93% yield with a melting point of 262-263 °C. IR: 3300 cm⁻¹ (N–H stretch) and 1650 cm⁻¹ (C=O stretch). ¹H NMR (500 MHz, DMSO- d_6 , δ , ppm): 5.76 (s, 2H, H_b), 6.86 (s, 2H, H_a), 7.02 (m, 20H, H_e+ H_c+ H_i + H_k), 7.04 (d, *J* = 9.0 Hz, 4H, H_h), 7.28 (t, *J* = 7.5 Hz, 8H, H_j), 7.32 (dd, *J* = 5.5 and 3.0 Hz, 4H, H_d), 7.75 (d, *J* = 9.0 Hz, 4H, H_g), 8.01 (d, *J* = 9.0 Hz, 4H, H_f), 10.20 (amide proton). ¹³C NMR (125 MHz, DMSO- d_6 , δ , ppm): 47.11 (C⁴), 116.33 (C⁹), 119.22 (C¹), 121.65 (C¹³), 122.32 (C¹⁹), 122.94 (C¹⁷), 123.92 (C⁷), 124.89 (C¹⁴), 125.34 (C⁶), 129.18 (C¹¹), 129.32 (C¹⁸), 129.82 (C¹⁰), 134.86 (C¹²), 139.10 (C³), 142.64 (C⁵), 144.15 (C¹⁵), 146.25 (C²), 147.32 (C¹⁶), 160.37 (C⁸), 164.35 (amide carbon).

T-CBZ-N was prepared from the condensation of triptycene-bis(ether carboxylic acid) **5** with two equivalent amount of *N*-(4-aminophenyl)carbazole (**9**) in 90% yield with a melting point of 146-147 °C. IR: 3300 cm⁻¹ (N–H stretch) and 1643 cm⁻¹ (C=O stretch). ¹H NMR (500 MHz, DMSO-*d*₆, *δ*, ppm): 5.79 (s, 2H, H_b), 6.90 (s, 2H, H_a), 7.06 (dd, *J* = 5.0 and 3.5 Hz, 4H, H_c), 7.07 (d, *J* = 8.5 Hz, 4H, H_e), 7.29 (t, *J* = 7.5 Hz, 4H, H_k), 7.36 (dd, *J* = 5.0 and 3.5 Hz, 4H, H_d), 7.38 (d, *J* = 8.5 Hz, 4H, H_i), 7.44 (t, *J* = 8.0 Hz, 4H, H_j), 7.61 (d, *J* = 9.0 Hz, 4H, H_h), 8.09 (d, *J* = 9.0 Hz, 4H, H_g), 8.10 (d, *J* = 8.5 Hz, 4H, H_f), 8.25 (d, *J* = 8.0 Hz, 4H, H₁), 10.49 (amide proton). ¹³C NMR (125 MHz, DMSO-*d*₆, *δ*, ppm): 47.12 (C⁴), 109.52 (C¹⁷), 116.43 (C⁹), 119.28 (C¹), 119.82 (C¹⁹), 120.40 (C²⁰), 121.56 (C¹³), 122.50 (C²¹), 123.96 (C⁷), 125.38 (C⁶), 126.12 (C¹⁸), 127.00 (C¹⁴),

129.07 (C¹¹), 130.01 (C¹⁰), 131.88 (C¹²), 138.54 (C³), 139.15 (C¹⁵), 140.26 (C¹⁶), 144.17 (C⁵), 146.26 (C²), 160.55 (C⁸), 164.83 (amide carbon).

Fig. S1 IR spectra of monomers: (a) T-TPA-C and T-TPA-N; (b) T-CBZ-C and T-CBZ-N.

Fig. S2 (a) ¹H, (b) ¹³C, (c) H-H COSY, and (d) C-H HSQC NMR spectra of monomer T-TPA-C in DMSO-d₆.

Fig. S3 (a) ¹H, (b) ¹³C, (c) H-H COSY, and (d) C-H HSQC NMR spectra of monomer T-TPA-N in DMSO-d₆.

Fig. S4 (a) ¹H, (b) ¹³C, (c) H-H COSY, and (d) C-H HSQC NMR spectra of monomer T-CBZ-C in DMSO-d₆.

Fig. S5 (a) ¹H, (b) ¹³C, (c) H-H COSY, and (d) C-H HSQC NMR spectra of monomer T-CBZ-N in DMSO-d₆.