Achieving visible light excitation in carbazole-based Eu^{3+} - β -diketonate complexes *via* molecular engineering

Biju Francis,^{ab} Christian Heering,^b Ricardo O. Freire,^c M. L. P. Reddy,^{*a} and Christoph Janiak^{*b}

^{*a*} CSIR-Network of Institutes for Solar Energy, National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvananthapuram-695 019, India. E-mail: <u>bijufrancis85@gmail.com</u>; <u>mlpreddy55@gmail.com</u>

^b Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, 40204 Düsseldorf, Germany. E-mail: janiak@uniduesseldorf.de; christian.heering@hhu.de

^c Pople Computational Chemistry Laboratory, Universidade Federal de Sergipe, 49100-000, Sao Cristováo, Sergipe, Brazil. Email: <u>rfreire_mail@yahoo.com.br</u>

Contents

Fig. S1 ¹H NMR spectrum of ligand L2

Fig. S2 FAB-MS spectrum of complex 1

Fig. S3 FAB-MS spectrum of complex $\mathbf{2}$

Fig. S4 FAB-MS spectrum of complex 3

Fig. S5 FAB-MS spectrum of complex 4

Fig. S6 FAB-MS spectrum of complex 5

Fig. S7 FAB-MS spectrum of complex 6

Fig. S8 ³¹P NMR spectrum of complex 4

Fig. S9 Thermogravimetric curves for complexes 1, 2 and 5

Fig. S10 Overlay of crystal structure and Sparkle/PM3 model optimized structure of complex A

Fig. S11 The ground state geometry of the complex 1 calculated using the Sparkle/PM3 model

Fig. S12 The ground state geometry of the complex 2 calculated using the Sparkle/PM3 model

Fig. S13 The ground state geometry of the complex 5 calculated using the Sparkle/PM3 model

Fig. S14 The ground state geometry of the complex 6 calculated using the Sparkle/PM3 model

Fig. S15 UV-vis absorption spectra of the ligands L2 and DDXPO and complexes 1, 2 and 5 in CHCl3 solution

Fig. S16 Solid state room temperature excitation ($\lambda_{em} = 612 \text{ nm}$) and emission spectra ($\lambda_{ex} = 400 \text{ nm}$) of complexes 1-4

Fig. S17 Solid state luminescence decay profiles of complexes 1 and 2 monitored at 612 nm.

Fig. S18 77 K phosphorescence spectra of complexes Gd(L1)₃(C₂H₅OH)₂ (5) and Gd(L2)₃(C₂H₅OH)₂ (6)

Table S1. Comparison of selected bond lengths (Å) from crystal structure and Sparkle/PM3 model geometry for complex A

Table S2. Selected bond lengths (Å) for complexes 1-4 by Sparkle/PM 3 model

Table S3. Selected bond angles (°) for complexes 1-4 by Sparkle/PM 3 model

Table S4. Selected bond lengths (Å) for complexes 5 and 6 by Sparkle/PM 3 model

Table S5. Selected bond angles (°) for complexes 5 and 6 by Sparkle/PM 3 model

Fig. S2 MS(FAB) Spectrum of complex 1

Fig. S3 MS(FAB) Spectrum of complex 2

Fig. S4 MS(FAB) Spectrum of complex 3

Fig. S6 MS(FAB) Spectrum of complex 5

Fig. S7 MS(FAB) Spectrum of complex 6

Fig. S8 ³¹P NMR Spectrum of complex 4

Fig. S9. Thermogravimetric curves for complexes $\mathbf{1},\,\mathbf{2}$ and $\mathbf{5}$

Fig. S10 Overlay of crystal structure and Sparkle/PM 3 model optimized structure of complex A

Fig. S11 (a) The ground state geometry of the complex 1 optimized by the Sparkle/PM3 model (b) Coordination environment of complex 1. All hydrogen atoms are omitted for clarity.

Fig. S12 (a) The ground state geometry of the complex 2 optimized by the Sparkle/PM3 model (b) Coordination environment of complex 2. All hydrogen atoms are omitted for clarity.

Fig. S13(a) The ground state geometry of the complex 5 optimized by the Sparkle/PM3 model (b) Coordination environment of complex 5. All hydrogen atoms are omitted for clarity.

Fig. S14 (a) The ground state geometry of the complex 6 optimized by the Sparkle/PM3 model (b) Coordination environment of complex 6. All hydrogen atoms are omitted for clarity.

Fig. S15 UV-vis absorption spectra of the ligands L1 and DDXPO and complexes 1, 2 and 5 in CHCl₃ solution ($c = 2 \times 10^{-6}$ mol L⁻¹).

Fig. S16(a) Solid-state room-temperature excitation ($\lambda_{em} = 612 \text{ nm}$) and emission ($\lambda_{em} = 612 \text{ nm}$) spectra for complexes 1-4. (b) ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of complexes 1-4

Fig. S17 Solid state luminescence decay profiles of complexes 1 and 2 monitored at 612 nm.

Fig. S18 77 K Phosphorescence spectra of complexes $Gd(L1)_3(C_2H_5OH)_2$ (5) and $Gd(L2)_3(C_2H_5OH)_2$ (6)

Table S1. Comparison of selected bond lengths (Å) from crystal structure and Sparkle/PM3 model geometry for complex A

	Bond lengths (Å)		Difference
	Crystal Structure	Sparkle/PM3 Model	
Eu-O2	2.300	2.418	0.118
Eu-O3	2.372	2.422	0.051
Eu-O4	2.399	2.469	0.071
Eu-O5	2.358	2.471	0.113
Eu-O6	2.399	2.463	0.064
Eu-O7	2.411	2.469	0.058
Eu-O8	2.344	2.474	0.129
Eu-O9	2.414	2.473	0.058
			Average 0.083

Table S2. Selected bond lengths (Å) for complexes 1-4 by Sparkle/PM 3 model

	1	2	3	4	
Eu-O2	2.4496	2.4190	2.4506	2.4194	
Eu-O3	2.4478	2.4221	2.4500	2.4224	
Eu-O4	2.4574	2.4673	2.4562	2.4665	
Eu-O5	2.4494	2.4721	2.4533	2.4737	
Eu-O6	2.4482	2.4653	2.4482	2.4643	
Eu-O7	2.4481	2.4668	2.4492	2.4674	
Eu-O8	2.4481	2.4717	2.4492	2.4710	
Eu-O9	2.4509	2.4712	2.4497	2.4706	

Table S3. Selected bond angles (°) for complexes 1-4 by Sparkle/PM 3 model

	1	2	3	4
Eu-O2-O3	63.836	77.953	63.981	77.947
Eu-O2-O4	91.884	145.014	93.140	144.765
Eu-O2-O5	95.925	89.430	89.775	89.164
Eu-O2-O6	84.492	136.549	83.904	136.713
Eu-O2-O7	109.227	83.862	113.823	84.090
Eu-O2-O8	148.444	122.685	129.569	122.899
Eu-O2-O9	133.400	77.442	150.847	77.520
Eu-O3-O4	134.288	80.238	138.919	80.178
Eu-O3-O5	80.679	88.550	81.973	88.632
Eu-O3-O6	126.024	142.588	123.528	142.359
Eu-O3-O7	86.084	152.342	87.600	152.598
Eu-O3-O8	146.579	75.318	67.704	75.277
Eu-O3-O9	73.004	105.440	144.205	105.283
Eu-O4-O5	63.053	62.904	63.302	62.942
Eu-O4-O6	85.659	74.118	83.877	74.210
Eu-O4-O7	139.601	104.416	133.480	104.244
Eu-O4-O8	60.677	132.332	114.963	76.719
Eu-O4-O9	106.899	90.515	60.393	135.332
Eu-O5-O6	148.712	103.020	146.206	103.269
Eu-O5-O7	142.657	70.459	146.662	70.430
Eu-O5-O8	85.542	138.592	69.793	138.632
Eu-O5-O9	59.249	158.080	88.592	158.002
Eu-O6-O7	63.529	62.573	63.558	62.552
Eu-O6-O8	78.543	72.626	137.059	72.337
Eu-O6-O9	137.824	76.207	81.419	76.192
Eu-O7-O8	86.732	132.332	76.941	132.121
Eu-O7-O9	83.519	90.515	81.579	90.615
Eu-O8-O9	73.770	62.694	76.615	62.762

Table S4. Selected bond lengths (\AA) for complexes 5 and 6 by Sparkle/PM 3 model

	5	6	
Gd-O2	2.4047	2. 4066	_
Gd-O3	2.3993	2.4006	
Gd-O4	2.4150	2.4114	
Gd-O5	2.4124	2.4084	
Gd-O6	2.3999	2.4011	
Gd-O7	2.4021	2.4038	
Gd-O8	2.4315	2.4586	
Gd-O9	2.4416	2.4329	

Table S5. Selected bond angles (°) for complexes 5 and 6 by Sparkle/PM 3 model

	5	6	
Gd-O2-O3	66.942	67.336	-
Gd-O2-O4	88.182	91.390	
Gd-O2-O5	91.475	85.824	
Gd-O2-O6	83.675	80.623	
Gd-O2-O7	122.462	117.926	
Gd-O2-O8	141.861	132.648	
Gd-O2-O9	127.778	145.048	
Gd-O3-O4	143.756	142.354	
Gd-O3-O5	87.067	80.794	
Gd-O3-O6	115.792	119.775	
Gd-O3-O7	82.838	85.107	
Gd-O3-O8	150.388	69.689	
Gd-O3-O9	73.198	146.908	
Gd-O4-O5	66.824	66.439	
Gd-O4-O6	85.364	84.387	
Gd-O4-O7	133.406	132.468	
Gd-O4-O8	55.830	111.683	
Gd-O4-O9	106.526	56.798	
Gd-O5-O6	151.939	147.475	
Gd-O5-O7	136.155	144.826	
Gd-O5-O8	85.684	68.456	
Gd-O5-O9	53.483	92.920	
Gd-O6-O7	66.637	66.463	
Gd-O6-O8	81.417	139.828	
Gd-O6-O9	145.672	82.029	
Gd-07-08	82.696	76.448	
Gd-07-09	82.809	81.656	
Gd-O8-O9	79.451	77.752	