Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

Copper-Catalysed Cross-Coupling Affected by the Smiles Rearrangement: A New Chapter on Diversifying the Synthesis of Chiral Fluorinated 1,4-Benzoxazine Derivatives

Saba Alapour,[†] Deresh Ramjugernath,[‡] and Neil A. Koorbanally^{*, †}

[†] School of Chemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

[‡] School of Chemical Engineering, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

Table of contents

- 1. General
- 2. Optimization of conditions for formation of Boc-[1,4]benzoxazine (Table 1)
- 3. Experimental Procedures
- 4. NMR spectra
- 5. HRMS data
- 6. Elemental analysis

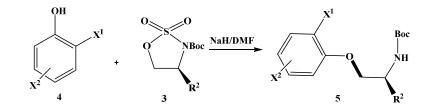
General

Material and Methods

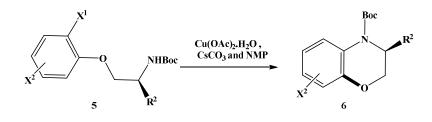
Reagents and solvents were purchased from Sigma Aldrich and used as received. Commercially available Merck Kieselgel 60 F_{254} aluminium backed plates were used for TLC analysis. Visualisation of TLC plates was achieved by UV fluorescence and iodine vapour. Compounds were purified by column chromatography packed with 60-200 mesh Silica gel.

All NMR spectra were recorded on Bruker AVANCE III 400 or 600 MHz instruments. Chemical shifts are quoted in parts per million (ppm) downfield from TMS as the internal standard and the coupling constants are reported in Hertz. Multiplicities of the NMR resonances are abbreviated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Assignments of ¹H NMR, ¹³C NMR and ¹⁹F NMR resonances were made with the aid of COSY, NOESY, HMBC and HSQC experiments. High resolution spectrometric data were obtained using a Waters micromass LCT premier TOF-MS instrument. Infra-red spectra were recorded in the range 4000-600 cm⁻¹ on a Perkin Elmer Spectrum as neat films onto a NaCl window. Elemental analysis was carried out on a Thermo Scientific Flash 2000. Melting points were obtained on a Stuart Melting Point apparatus SMP11 and are uncorrected. Abbreviations used are: w (weak), m (medium), s (strong) and br (broad). Optical rotations were measured using a Perkin-Elmer 341 polarimeter.

Table 1. Optimization of conditions for formation of Boc-[1,4]benzoxazine.

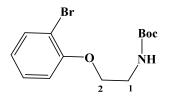


No.	cat.	ligand	base	solvent	temp. ^a	yield ^{b,c}
Solvent optimisation						
1	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	THF	90	trace
2	Cu(OAc) ₂ .H ₂ O	none	Cs ₂ CO ₃	toluene	90	trace
3	Cu(OAc) ₂ .H ₂ O	none	Cs ₂ CO ₃	dioxan	90	75
4	Cu(OAc) ₂ .H ₂ O	none	Cs ₂ CO ₃	DMSO	90	75
5	Cu(OAc) ₂ .H ₂ O	none	Cs ₂ CO ₃	DMF	90	95
6	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	NMP	90	98
catalyst optimisation						
7	CuBr	none	Cs_2CO_3	NMP	90	60
8	CuI	none	Cs_2CO_3	NMP	90	66
9	CuSO ₄	none	Cs_2CO_3	NMP	90	79
10	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	NMP	90	98
11	none	none	Cs ₂ CO ₃	NMP	90	None
Base optimisation						
12	$Cu(OAc)_2.H_2O$	none	None	NMP	90	none
13	Cu(OAc) ₂ .H ₂ O	none	TEA ^d	NMP	90	trace
14	Cu(OAc) ₂ .H ₂ O	none	NaOC(CH ₃) ₃	NMP	90	73
15	$Cu(OAc)_2.H_2O$	none	КОН	NMP	90	80
16	$Cu(OAc)_2.H_2O$	none	K ₂ CO ₃	NMP	90	87
17	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	NMP	90	98
Ligand optimisation						
18	$Cu(OAc)_2.H_2O$	1,2-diamine	Cs_2CO_3	NMP	90	80
19	$Cu(OAc)_2.H_2O$	Hyp ^e	Cs_2CO_3	NMP	90	83
20	$Cu(OAc)_2.H_2O$	xantphos	Cs_2CO_3	NMP	90	85
21	$Cu(OAc)_2.H_2O$	L-proline	Cs_2CO_3	NMP	90	90
22	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	NMP	90	98
Temperature optimisation						
23	$Cu(OAc)_2.H_2O$	none	Cs_2CO_3	NMP	25	90

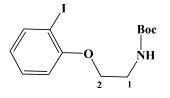

^a Temperature (°C). ^b Isolated yield (%). ^c The reaction time for all reactions is 24 hours. ^d TEA: triethylamine ^e Hyp: *trans*-4-Hydroxy-*L*-proline

Experimental Procedures

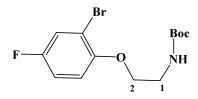
Compounds 2-4 were prepared according to standard procedures reported in the literature.^{1, 2}



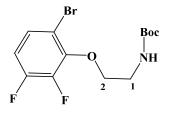
General experimental procedure for the preparation of adduct 5: NaH (60 % dispersion in mineral oil, 40 mg, 1.01 mmol) was added to a solution of phenol 4 (211 mg, 1.01 mmol) in anhydrous DMF (10 mL) and the resultant mixture stirred at r.t. for 5 minutes. Cyclic sulfamidate 3 (200 mg, 0.84 mmol) was added and the mixture stirred at r.t. for 15 h prior to being concentrated in vacuo. The mixture was washed with saturated aq. NaCl and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were concentrated in vacuo to afford amine 5. This material was suitable for subsequent applications without any further purification. For analysis, a small portion was isolated by Column chromatography (EtOAc/hexane: 5:95).


General experimental procedure for the preparation of dihydrobenzo[1,4]oxazines 6: In a 10 mL round bottom flask, $Cu(OAc)_2.H_2O$ (0.2 equiv), Cs_2CO_3 (3 equiv), and compound 5 (60 mg) were dissolved in NMP (5.0 mL). The mixture was stirred at 90 °C, and the progress of the reaction monitored by TLC. After 24 h the solvent was evaporated in vacuo and the residue diluted with CH_2Cl_2 (20 mL), washed with water (2×10 mL) and brine (2×10 mL), dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (EtOAc/hexane: 10:90) to afford Boc-benzoxazine **6**.

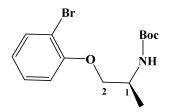
Characterisation data for compounds 5a-i and 6a, 6c, 6d and 6f


tert-butyl (2-(2-bromophenoxy)ethyl)carbamate (5a):

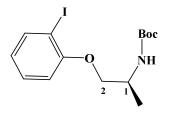
colourless oil; v_{max} /cm⁻¹(film) 3441 (m), 2978 (m), 2934 (m), 1712 (s), 1587 (m), 1574 (m), 1509 (s), 1481 (s), 1278 (m), 1057 (s). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.41 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.51 (2H, m, 2C1-<u>H</u>), 4.00 (2H, t, 2C2-<u>H</u>, *J*=5.2), 5.24 (1H, br s, N<u>H</u>), 6.79 (2H, m, ArC<u>H</u>), 7.18 (1H, m, ArC<u>H</u>), 7.46 (1H, dd, *J*=7.8, 1.5 Hz, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (NCO₂C(<u>C</u>H₃)₃), 40.0 (<u>C</u>-1), 68.5 (<u>C</u>-2), 76.9 (NCO₂<u>C</u>(CH₃)₃), 113.7 (Ar<u>C</u>H), 122.3 (Ar<u>C</u>H), 128.5 (Ar<u>C</u>H), 133.2 (Ar<u>C</u>H), 154.9 (s, C=O). The signals for the two aromatic quaternary carbons were not observed in the ¹³C NMR spectrum. HRMS–ES⁺: *m*/*z* [M+Na] calcd for C₁₃H₁₈BrNO₃: 338.0368, found: 338.0376.


tert-butyl (2-(2-iodophenoxy)ethyl)carbamate (5b):

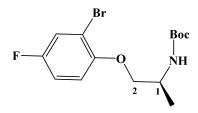
colourless oil; v_{max}/cm^{-1} (film) 3355 (m), 2977 (m), 2934(m), 1711 (s), 1582(m), 1520 (s), 1475 (s), 1276 (m), 1247 (s), 1056 (s). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.37 (9H, s, NCO₂C(C<u>H₃</u>)₃), 3.49 (2H, m, 2C1-<u>H</u>), 3.96 (2H, t, 2C2-<u>H</u>, *J*=5.1 Hz), 5.08 (1H, br, s, N<u>H</u>), 6.63 (1H, td, ArC<u>H</u>, *J*=7.6, 1.0 Hz), 6.71 (1H, dd, ArC<u>H</u>, *J*=7.3, 0.8 Hz), 7.18 (1H, m, ArC<u>H</u>), 7.67 (1H, td, ArC<u>H</u>, *J*=7.8, 1.5 Hz); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (NCO₂C(<u>CH₃</u>)₃), 40.0 (<u>C</u>-1), 68.6 (<u>C</u>-2), 79.5 (NCO₂<u>C</u>(CH₃)₃), 86.8 (Ar<u>C</u>-I), 112.5 (Ar<u>C</u>H), 123.0 (Ar<u>C</u>H), 129.6, (Ar<u>C</u>H), 139.4 (Ar<u>C</u>H), 155.9 (s, C=O), 157.0 (Ar<u>C</u>). HRMS–ES⁺: *m/z* [M+Na] calcd for C₁₃H₁₈INO₃: 386.0229; found: 386.0230.


tert-butyl (2-(2-bromo-4-fluorophenoxy)ethyl)carbamate (5c):

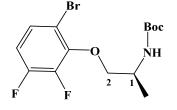
colourless oil; v_{max}/cm^{-1} (film) 3356 (m), 2979 (m), 2935 (m), 1712 (s), 1593 (m), 1493 (s), 1257 (m), 1171 (m), 1048 (s). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.37 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.47 (2H, m, 2C1-<u>H</u>), 3.95 (2H, t, 2C2-<u>H</u>, *J*=5.0 Hz), 5.06 (1H, br, s, N<u>H</u>), 6.76 (1H, dd, ArC<u>H</u>, *J*=9.0, 4.7 Hz), 6.88 (1H, m, ArC<u>H</u>), 7.20 (1H, dd, ArC<u>H</u>, *J*=7.8, 3.0 Hz); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (NCO₂C(<u>C</u>H₃)₃), 40.0 (C-1), 69.4 (C-2), 79.6 (NCO₂C(CH₃)₃), 114.3 (d, *J*= 8.3 Hz, Ar<u>C</u>H), 114.8 (d, *J*= 22.5 Hz, Ar<u>C</u>H), 120.4 (d, *J*= 25.7 Hz, Ar<u>C</u>H), 151.6 (d, *J*=2.9 Hz, ArC), 156.0 (s, 2C, C=O, ArC-O),156.9 (d, *J*=243.5 Hz, Ar<u>C</u>). HRMS–ES⁺: *m/z* [M+Na] calcd for C₁₃H₁₇BrFNO₃: 356.0274; found: 356.0276.


tert-butyl (2-(6-bromo-2,3-difluorophenoxy)ethyl)carbamate (5d):

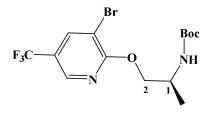
colourless oil; v_{max}/cm^{-1} (film) 3359 (m), 2979 (s), 2934 (s), 1705 (s), 1612 (m), 1584 (m), 1487 (s), 1292 (m), 1171 (s), 1054 (m). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.36 (9H, s, NCO₂C(CH₃)₃), 3.43 (2H, m, 2C1-H), 4.10 (2H, t, 2C2-H, J=4.98), 5.24 (1H, br, s, NH), 6.73 (1H, ddd, ArCH, J=9.2, 9.12, 7.7), 7.15 (1H, ddd, ArCH, J=9.0, 5.4, 2.5). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (NCO₂C(CH₃)₃), 40.6 (C-1), 73.6 (C-2), 79.4 (NCO₂C(CH₃)₃), 112.6 (d, *J*= 18.3, ArCH), 126.7 (dd, *J*= 7.5, 4.2, ArCH), 144.9 (dd, *J*= 250.9, 14.3, ArC), 145.4 (d, *J*=8.2, ArC), 150.5 (dd, *J*=250.2, 11.3, ArC), 155.9 (ArC). HRMS–ES⁺: *m*/*z* [M+Na] calcd for C₁₃H₁₇BrFNO₃: 374.0179; found: 374.0189.


tert-butyl (S)-(1-(2-bromophenoxy)propan-2-yl)carbamate (5e):

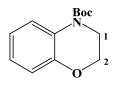
colourless crystal; mp 53-55 °C; $[\alpha]_D^{20}$ -32.20° (c=0.35 , MeOH); v_{max}/cm^{-1} (film) 3431 (m), 2978 (s), 2934 (m), 1715 (s), 1586 (m), 1574 (m), 1504 (s), 1483 (s), 1169 (m), 1053 (m). ¹H NMR (600 MHz, CDCl₃) δ_H 1.32 (3H, d, *J*=6.8 Hz, C1-C<u>H</u>₃), 1.43 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.95 (1H, s, br, C1-<u>H</u>), 4.07 (2H, s, br, 2C2-<u>H</u>), 5.01 (1H, br, s, N<u>H</u>), 6.80 (1H, t, *J*=7.6 Hz, ArC<u>H</u>), 6.85 (1H, d, *J*=8.2 Hz, ArC<u>H</u>), 7.20 (1H, t, *J*=7.7 Hz, ArC<u>H</u>), 7.49 (1H, d, *J*=7.8 Hz, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 17.9 (C1-<u>C</u>H₃), 28.4 (NCO₂C(<u>C</u>H₃)₃), 45.8 (<u>C</u>-1), 72.1 (<u>C</u>-2), 113.4 (Ar<u>C</u>H), 122.2 (Ar<u>C</u>H), 122.4 (Ar<u>C</u>), 128.5 (Ar<u>C</u>H), 133.3 (Ar<u>C</u>H), 155.0 (s, 2C, C=O, ArC-O). The signal for the quaternary Boc carbon was not observed in the ¹³C NMR spectrum. HRMS–ES⁺: *m*/z [M+Na] calcd for C₁₄H₂₀BrNO₃: 352.0524; found: 352.0529.


tert-butyl (S)-(1-(2-iodophenoxy)propan-2-yl)carbamate (5f):

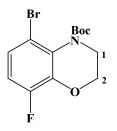
colourless crystal; mp 60-62 °C; $[\alpha]_D^{20}$ -33.7° (c=0.5 , MeOH); v_{max}/cm^{-1} (film) 3425 (m), 2977 (s), 2933 (m), 1715 (s), 1583 (m), 1571 (m), 1502 (m), 1366 (m), 1246 (s), 1051 (m). ¹H NMR (600 MHz, CDCl₃) δ_H 1.36 (3H, d, *J*=6.9 Hz, C1-C<u>H</u>₃), 1.44 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.94 (1H, s, br, C1-<u>H</u>), 4.10 (2H, s, br, 2C2-<u>H</u>), 5.0 (1H, br, s, N<u>H</u>), 6.68 (1H, t, *J*=7.5 Hz, ArC<u>H</u>), 6.76 (1H, d, *J*=8.2 Hz, ArC<u>H</u>), 7.25 (1H, m, ArC<u>H</u>), 7.73 (1H, dd, *J*=7.7, 1.3, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 18.2 (C1-<u>C</u>H₃), 28.4 (NCO₂C(<u>C</u>H₃)₃), 45.8 (<u>C</u>-1), 72.1 (<u>C</u>-2), 86.6 (ArC-I), 112.2 (Ar<u>C</u>H), 122.8 (Ar<u>C</u>H), 129.6 (Ar<u>C</u>H), 139.3 (Ar<u>C</u>H), 155.3 (s, C=O), 157.0 (Ar<u>C-O</u>). The signal for the quaternary Boc carbon was not observed in the ¹³C NMR spectrum. HRMS–ES⁺: *m/z* [M+Na] calcd for C₁₄H₂₀INO₃: 400.0386; found: 400.0396.


tert-butyl (S)-(1-(2-bromo-4-Sfluorophenoxy)propan-2-yl)carbamate (5g):

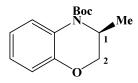
colourless oil; $[\alpha]_D^{20}$ -28.25° (c=0.4 , MeOH); v_{max}/cm^{-1} (film) 3347 (m), 2978 (m), 2934 (m),1699 (s), 1493 (s), 1470 (m), 1392 (m),1367 (m), 1260 (s), 1191 (s), 1046 (s). ¹H NMR (400 MHz, CDCl₃) δ_H 1.25 (3H, d, *J*=6.7 Hz, C1-C<u>H</u>₃), 1.37 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.86 (2H, d, *J*=3.6 Hz, 2C2-<u>H</u>), 3.98 (1H, s, C1-<u>H</u>), 4.82 (1H, br, s, N<u>H</u>), 6.75 (1H, dd, *J*=9.0, 4.7, ArC<u>H</u>), 6.87 (1H, m, ArC<u>H</u>), 7.19 (1H, dd, *J*=7.8, 2.9, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 17.9 (C1-<u>C</u>H₃), 28.4 (NCO₂C(<u>C</u>H₃)₃), 50.5 (C-1), 72.8 (C-2), 114.0 (d, *J*=8.6 Hz, Ar<u>C</u>H), 114.7 (d, *J*=22.6 Hz, Ar<u>C</u>H), 120.4 (d, *J*= 25.8 Hz, Ar<u>C</u>H), 158.0 (s, C=O). The signals for the quaternary carbons were not observed in the ¹³C NMR spectrum. HRMS–ES⁺: *m*/*z* [M+Na] calcd for C₁₄H₁₉BrFNO₃: 370.0430; found: 370.0419.


tert-butyl (S)-(1-(6-bromo-2,3-difluorophenoxy)propan-2-yl)carbamate (5h):

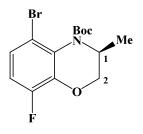
colourless crystals; mp 55-57 °C; $[\alpha]_D^{20}$ -21.7° (c=0.35 , MeOH). v_{max}/cm^{-1} (film) 3342 (m), 2979 (m), 2933 (m), 1713 (s), 1612 (m), 1584 (m), 1488 (s), 1391 (m), 1367 (m), 1170 (s), 1049 (s). ¹H NMR (400 MHz, CDCl₃) δ_H 1.28 (3H, d, *J*=6.8 Hz, C1-C<u>H</u>₃), 1.37 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.92 (1H, s, C1-<u>H</u>), 4.40 (2H, s, 2C2-<u>H</u>), 4.89 (1H, br, s, N<u>H</u>), 6.74 (1H, m, ArC<u>H</u>), 7.18 (1H, m, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 17.6 (C1-<u>C</u>H₃), 28.5 (NCO₂C(<u>C</u>H₃)₃), 46.5 (C-1), 77.0 (C-2), 79.4 (NCO₂<u>C</u>(CH₃)₃), 111.5 (d, *J*=3.6 Hz, Ar<u>C</u>), 112.5 (d, *J*= 18.4 Hz, Ar<u>C</u>H), 126.8 (dd, *J*= 7.6, 4.2 Hz, Ar<u>C</u>H), 144.9 (dd, *J*= 252.8, 14.3 Hz, Ar<u>C</u>), 145.6 (dd, *J*=7.9, 2.2 Hz, Ar<u>C</u>), 150.8 (dd, *J*=250.3, 11.4 Hz, Ar<u>C</u>), 155.3 (s, C=O). HRMS–ES⁺: *m/z* [M+Na] calcd for C₁₄H₁₈BrF₂NO₃: 388.0336; found: 388.0335.


tert-butyl (S)-(1-((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)propan-2-yl)carbamate (5i):

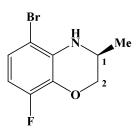
white powder; mp 68-70 °C; $[\alpha]_D^{20}$ -21.83° (c=0.35 , MeOH); v_{max}/cm^{-1} (film) 3348 (m), 2979 (m), 2934 (m), 1704 (s), 1604 (m), 1482 (s), 1367 (m), 1320 (m), 1162 (s), 1055 (s). ¹H NMR (400 MHz, CDCl₃) δ_H 1.22 (3H, d, *J*=6.8 Hz, C1-C<u>H</u>₃), 1.37 (9H, s, NCO₂C(C<u>H</u>₃)₃), 4.07 (1H, s, C1-<u>H</u>), 4.31 (2H, m, 2C2-<u>H</u>), 4.66 (1H, br, s, N<u>H</u>), 7.94 (1H, d., *J*=1.7 Hz, ArC<u>H</u>), 8.27 (1H, s, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 17.8 (C1-<u>C</u>H₃), 28.4 (NCO₂C(<u>C</u>H₃)₃), 45.5 (<u>C</u>-1), 70.7 (<u>C</u>-2), 107.4 (Ar<u>C</u>), 121.4 (q, *J*= 33.4 Hz, ArC), 123.0 (q, *J*= 271.6 Hz, <u>C</u>F₃), 138.6 (q, *J*= 3.1 Hz, Ar<u>C</u>H), 143.2 (q, *J*= 4.3 Hz, Ar<u>C</u>H), 155.2 (C=O), 161.7 (Ar<u>C</u>-O). HRMS–ES⁺: *m/z* [M+Na] calcd for C₁₄H₁₈BrF₃N₂O₃: 421.0351; Found: 421.0363.


tert-butyl 2,3-dihydro-4*H*-benzo[*b*][1,4]oxazine-4-carboxylate (6a):

colourless oil; v_{max}/cm^{-1} (film) 2977 (s), 2932 (s), 1705 (s), 1605 (m), 1586 (m), 1497 (m), 1380 (s), 1148 (s), 1062 (s); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.47 (9H, s, NCO₂C(C<u>H</u>₃)₃), 3.78 (2H, t, *J*= 4.5 Hz, 2C1-<u>H</u>), 4.17 (2H, t, *J*= 4.4 Hz, 2C2-<u>H</u>), 6.80 (2H, m, ArC<u>H</u>), 6.90 (1H, m, ArC<u>H</u>), 7.70 (1H, m, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 28.3 (NCO₂C(<u>CH</u>₃)₃), 42.1 (<u>C</u>-1), 65.6 (<u>C</u>-2), 81.6 (NCO₂C(CH₃)₃), 117.0 (Ar<u>C</u>H), 120.2 (Ar<u>C</u>H), 123.5 (Ar<u>CH</u>), 124.4 (Ar<u>CH</u>), 145.9 (Ar<u>C-O</u>). The resonances for the C=O group and the aromatic C-N were not observed in ¹³C NMR spectrum. The spectroscopic properties of this compound were consistent with the data available in the literature.²


tert-butyl 5-bromo-8-fluoro-2,3-dihydro-4*H*-benzo[*b*][1,4]oxazine-4-carboxylate(6c):

colourless crystal; v_{max}/cm^{-1} (film) 2979 (s), 2936 (s), 2890 (m), 1713 (s), 1609 (m), 1582 (m), 1483 (s), 1368 (s), 1161 (s), 1043 (s); ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.41 (9H, s, NCO₂C(C<u>H</u>₃)₃), 4.15 (2H, m, 2C1-<u>H</u>), 4.40 (2H, br, 2C2-<u>H</u>), 6.75 (1H, dd, ArC<u>H</u>, *J*=10.1, 8.9), 6.99 (1H, dd, ArC<u>H</u>, *J*=8.8, 5.0); ¹³C NMR (100 MHz, CDCl₃) δ_{C} 28.0 (NCO₂C(CH₃)₃), 66.6 (<u>C</u>-1), 68.1 (<u>C</u>-2), 82.5 (NCO₂C(CH₃)₃), 113.6 (d, *J*= 19.0, Ar<u>C</u>H), 115.0 (d, *J*= 3.5, Ar<u>C</u>), 123.0 (d, *J*= 7.4 Ar<u>C</u>H), 150.9 (d, *J*=246, Ar<u>C</u>F). The resonances for the C=O group and the quaternary aromatic C-O carbon were not observed in ¹³C NMR spectrum. The sample did not ionise properly and as such a HRMS could not be obtained.


tert-butyl (S)-3-methyl-2,3-dihydro-4*H*-benzo[*b*][1,4]oxazine-4-carboxylate (6d):

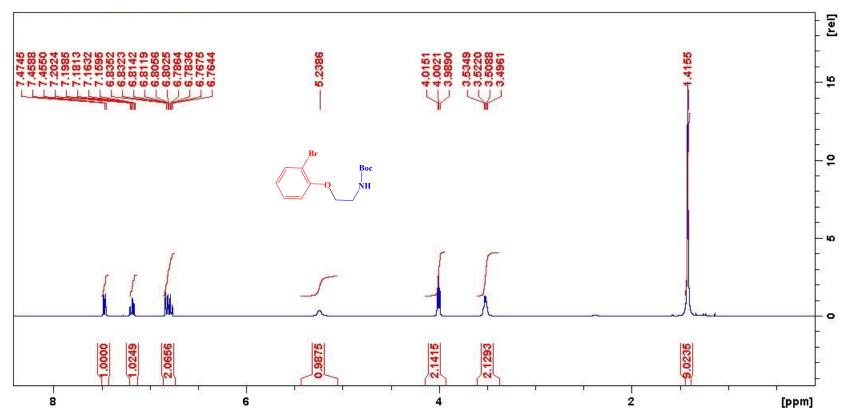
colourless oil; $[\alpha]_D^{20}$ - 26.6° (c =0.18, MeOH); v_{max}/cm^{-1} (film) 2976 (s), 2930 (s), 2876 (m), 1698 (s), 1605 (m), 1585 (m), 1496 (s), 1368 (m), 1171 (m), 1064 (m). ¹H NMR (600 MHz, CDCl₃) δ_H 1.34 (3H, d, *J*= 6.8 Hz, C1-C<u>H</u>₃), 1.47 (9H, s, NCO₂C(C<u>H</u>₃)₃), 4.04 (1H, d, *J*= 2.0 Hz, C1-<u>H</u>), 4.60 (2H, m, 2C2-<u>H</u>), 6.81 (2H, m, 2ArC<u>H</u>), 6.89 (1H, m, ArC<u>H</u>), 7.78 (1H, m, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 15.6 (C1-<u>C</u>H₃), 28.4 (NCO₂C(<u>C</u>H₃)₃), 46.2 (<u>C</u>-1), 69.0 (<u>C</u>-2), 81.5 (NCO₂<u>C</u>(CH₃)₃), 116.7 (Ar<u>C</u>H), 120.5 (Ar<u>C</u>H), 123.7 (Ar<u>C</u>H), 123.9 (Ar<u>C</u>H). The resonances for the C=O and quaternary aromatic C-O and C-N carbons were not observed in ¹³C NMR spectrum. The ¹H and ¹³C NMR data were consistent with that available in the literature.²

tert-butyl (S)-5-bromo-8-fluoro-3-methyl-2,3-dihydro-4*H*-benzo[*b*][1,4]oxazine-4-carboxylate (6f):

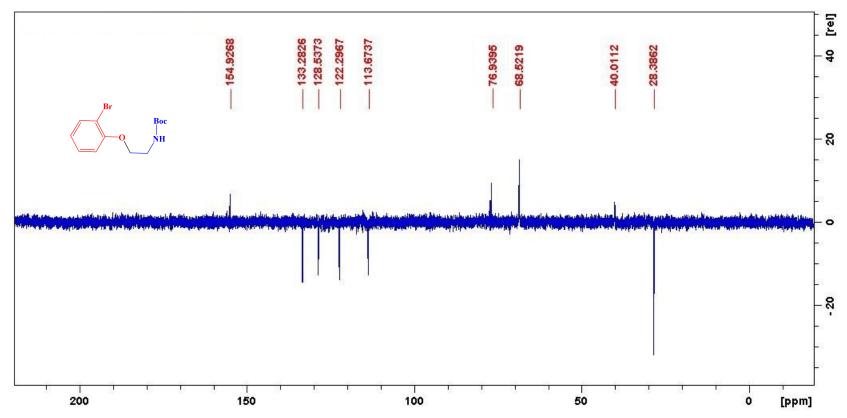
colourless oil; $[\alpha]_D^{20} - 25.5^\circ$ (c =0.2, CHCl₃). v_{max}/cm^{-1} (film) 2979 (m), 2935 (m), 2889 (m), 1712 (s), 1608 (m), 1585 (m), 1450 (m), 1369 (m), 1171 (m), 1033 (m). ¹H NMR (400 MHz, CDCl₃) δ_H 1.10 (3H, d, *J*= 7.2 Hz, C1-C<u>H</u>₃), 1.47 (9H, s, NCO₂C(C<u>H</u>₃)₃), 4.19 (2H, m, C2-<u>H</u>), 4.78 (1H, br s, C1-<u>H</u>), 6.83 (1H, m, ArC<u>H</u>), 7.07 (1H, m, ArC<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ_C 15.5 (C1-<u>C</u>H₃), 28.1 (NCO₂C(C<u>H</u>₃)₃), 45.9 (C-1), 70.3 (C-2), 82.5 (NCO₂C(CH₃)₃), 113.6 (d, *J*= 18.9 Hz, ArCH), 116.3 (s, ArC), 123.4 (d, *J*= 7.3 Hz, ArCH), 150.6 (d, *J*= 245.8 , ArCF). The resonances for the C=O group and the quaternary aromatic C-O carbon were not observed in ¹³C NMR spectrum. The sample did not ionise properly and as such a HRMS could not be obtained. Elemental Anal. Calcd. for C₁₄H₁₇BrFNO₃: C, 48.57; H, 4.95; N, 4.05%. Found: C, 48.75; H, 4.68; N, 3.98%. To confirm the structure of **6e** we deprotected it and were able to obtain HRMS data for the deprotected structure (presented below).

(S)-5-bromo-8-fluoro-3-methyl-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine (6f deprotected):

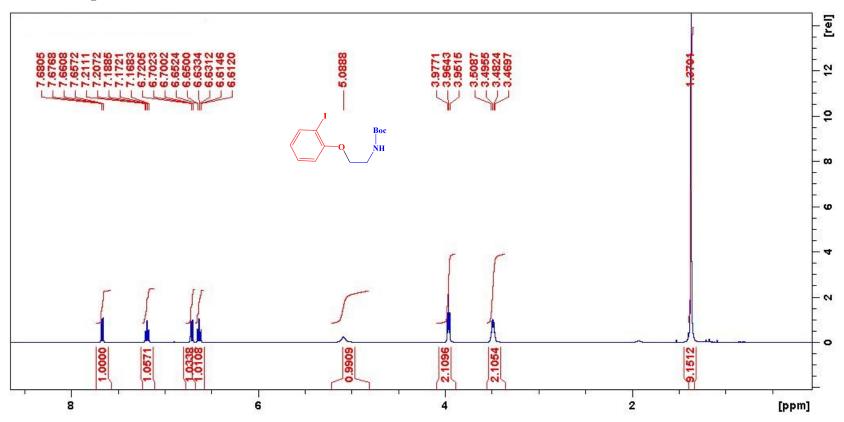
colourless oil; $[\alpha]_D^{20}$ +13.5° (c =0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ_H 1.28 (3H, d, *J*= 6.4 Hz, C1-C<u>H₃</u>), 3.63 (1H, m, C1-<u>H</u>), 3.80 (1H, dd, *J*= 10.4, 7.8 Hz, C2-<u>H</u>), 4.26 (1H, br N<u>H</u>), 4.29 (1H, m, C2-<u>H</u>), 6.42 (1H, m, ArC<u>H</u>), 6.95 (1H, m, ArCH); ¹³C NMR (150 MHz, CDCl₃) δ_C 17.6 (C1-<u>C</u>H₃), 45.3 (C-1), 70.4 (C-2), 102.9 (Ar<u>C</u>, d, 2.2 Hz), 103.7 (d, *J*= 19.9 Hz, Ar<u>C</u>H), 123.2 (d,

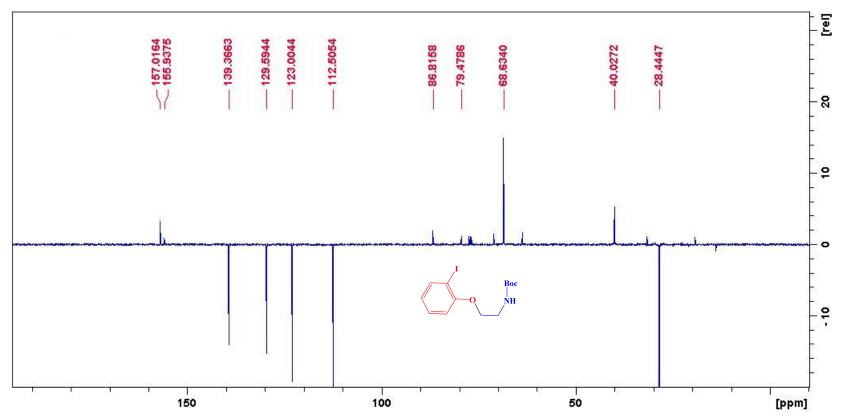

J= 8.6 Hz, Ar<u>C</u>H), 132.2 (d, J= 14.9 Hz, Ar<u>C</u>), 133.2 (d, J= 4.4 Hz, Ar<u>C</u>), 151.0 (d, J= 242.2 , Ar<u>CF</u>). HRMS-ES⁺: m/z [M+H] calcd for C₉H₁₀NOFBr: 245.9930; found: 245.9931.

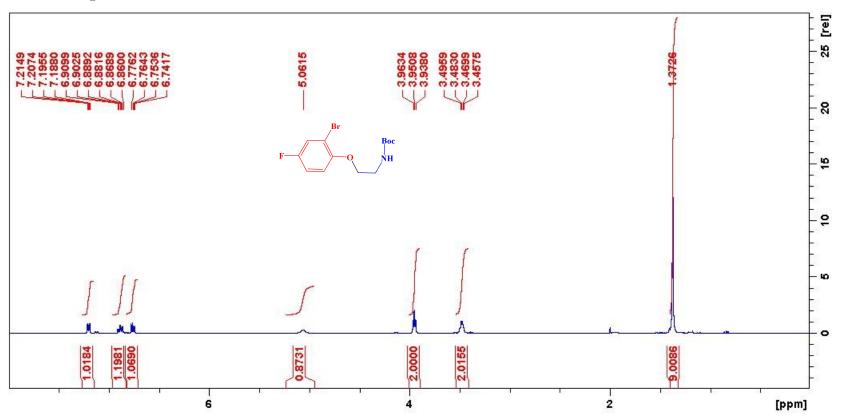
References

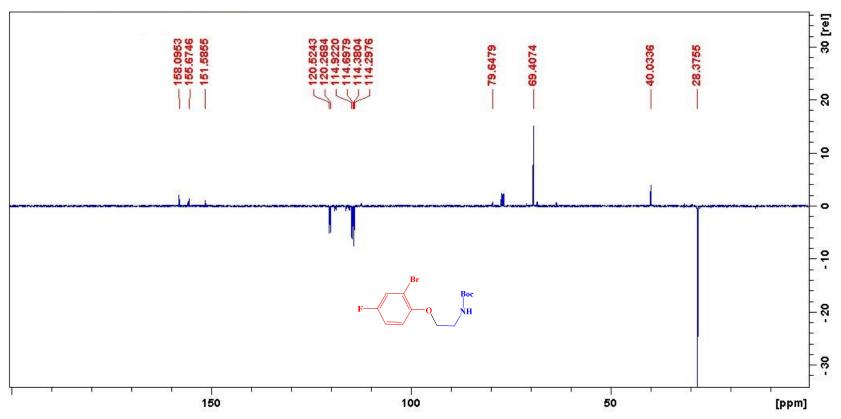

- 1. J. F. Bower, P. Szeto and T. Gallagher, *Org. Lett.*, 2007, **9**, 3283-3286.
- 2. P. Jangili, J. Kashanna and B. Das, *Tetrahedron Lett.*, 2013, **54**, 3453-3456.

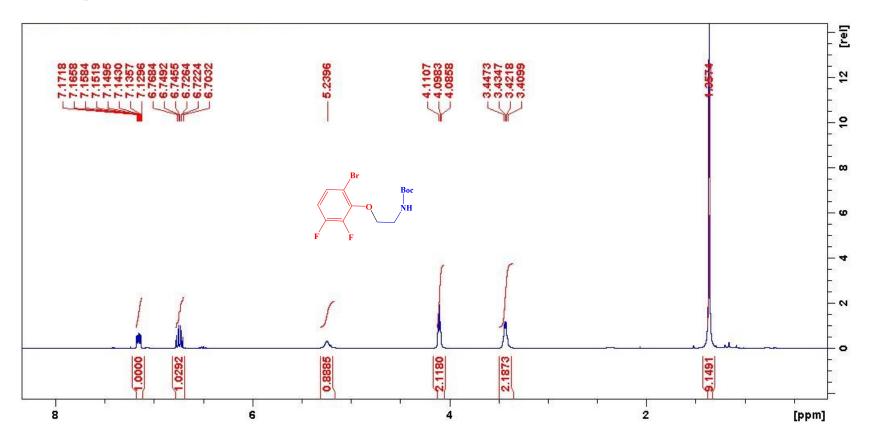
NMR spectra

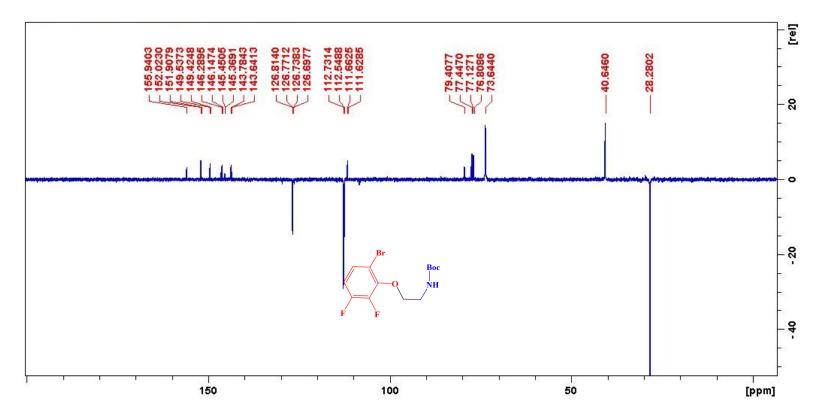

¹H NMR spectra of 5a

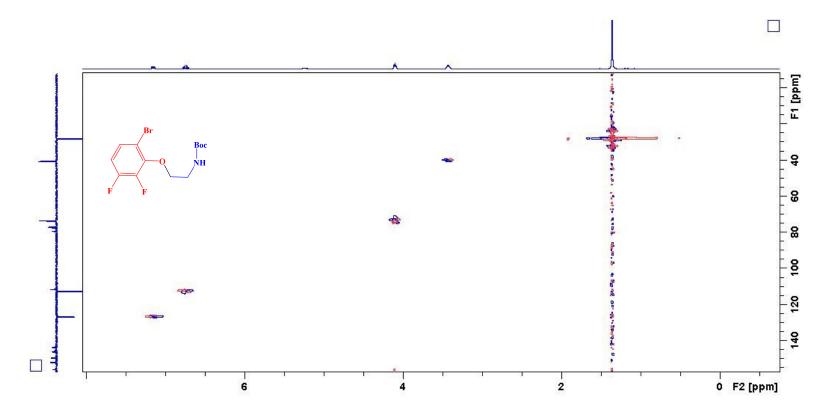

¹³C NMR spectra of 5a


¹H NMR spectra of 5b

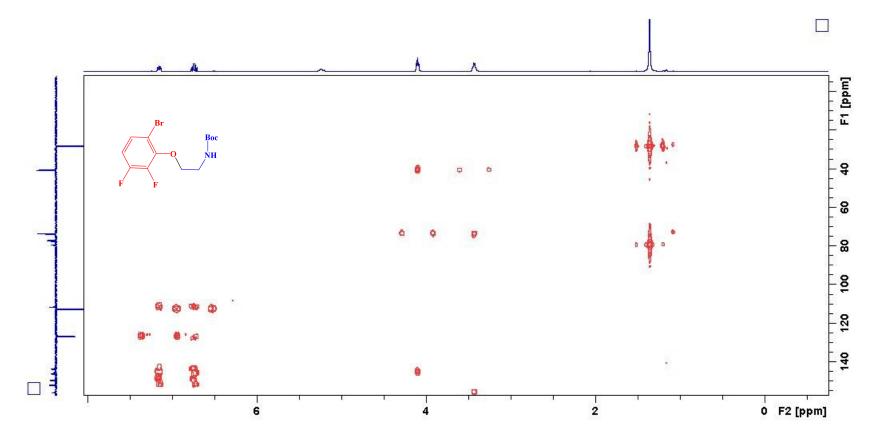

¹³C NMR spectra of 5b


¹H NMR spectra of 5c

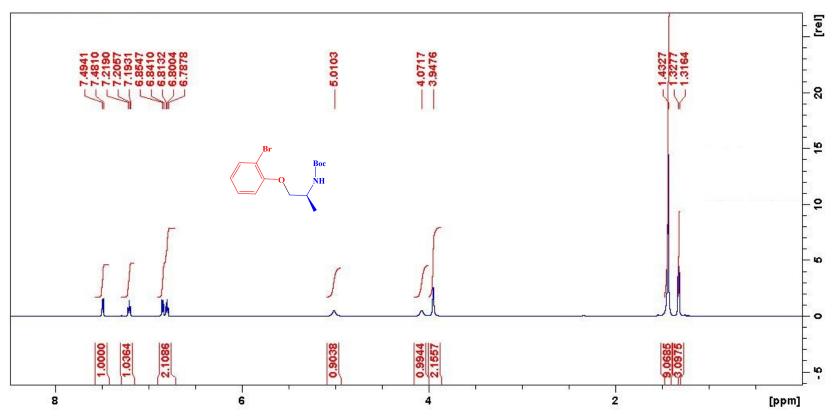

¹³C NMR spectra of 5c

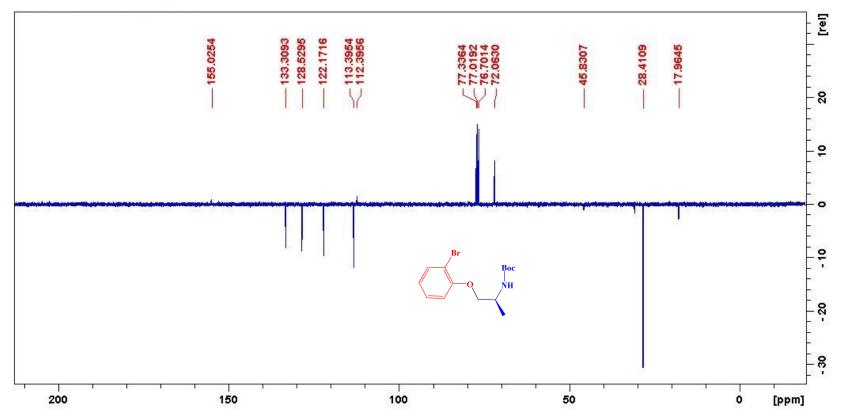


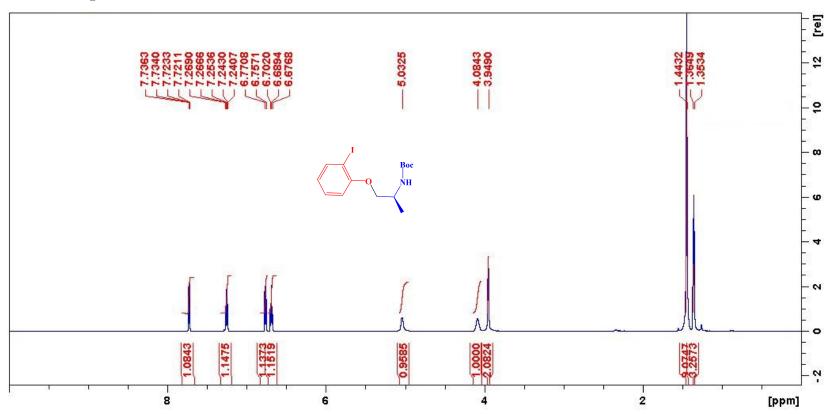
¹H NMR spectra of **5d**

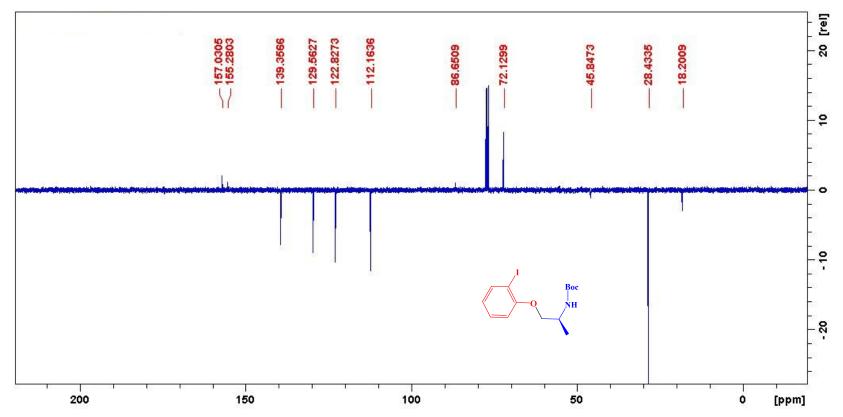


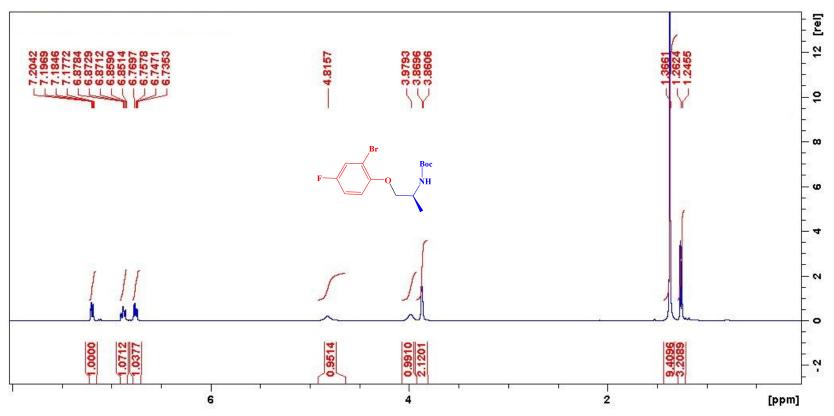
¹³C NMR spectra of **5d**

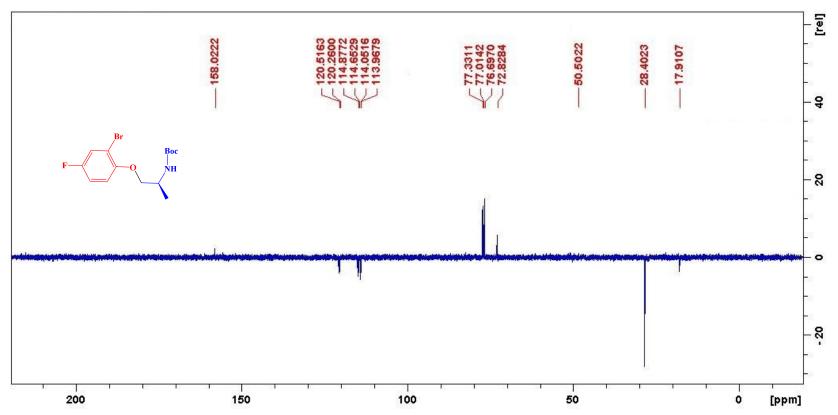


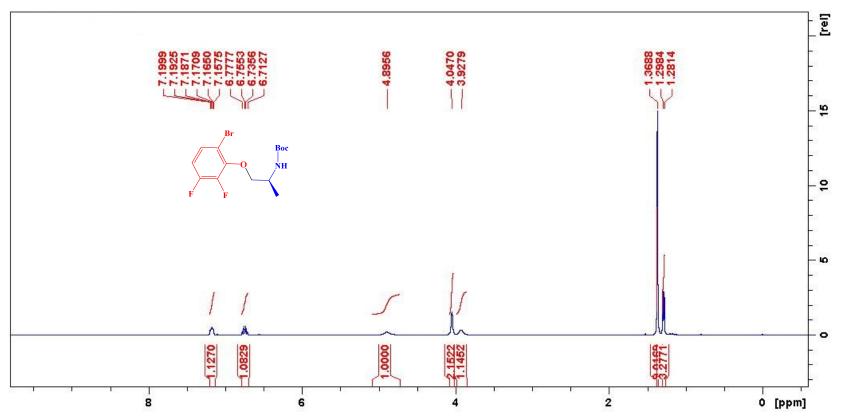

HMBC spectra of 5d

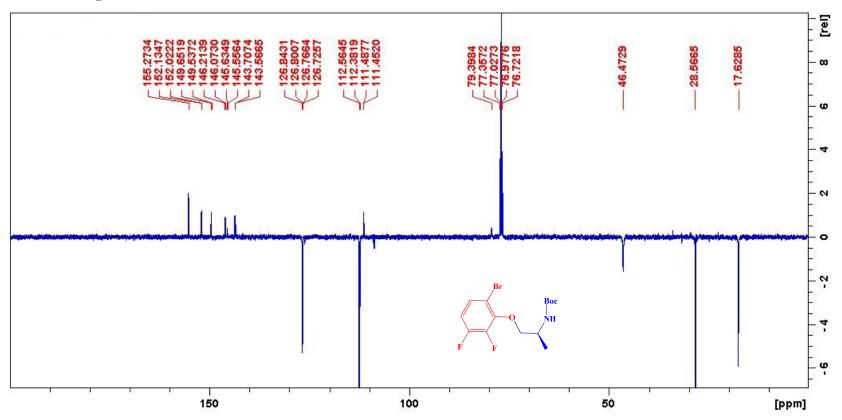

¹H NMR spectra of 5e

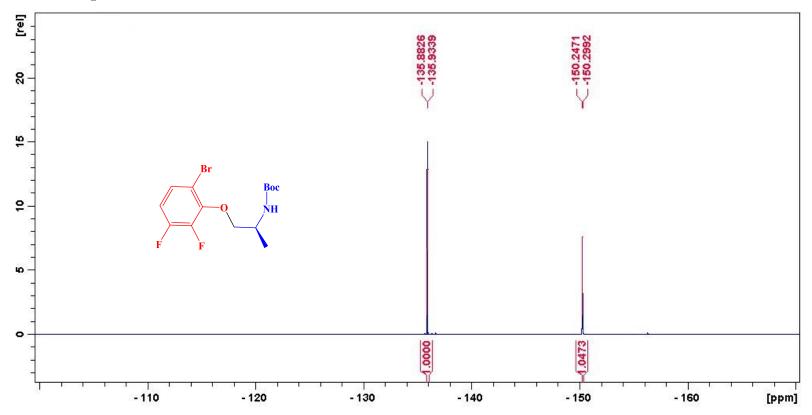

¹³C NMR spectra of 5e

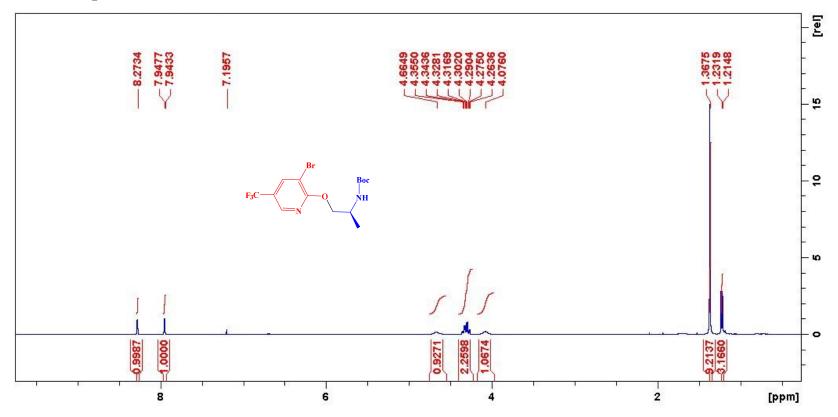

¹H NMR spectra of 5f

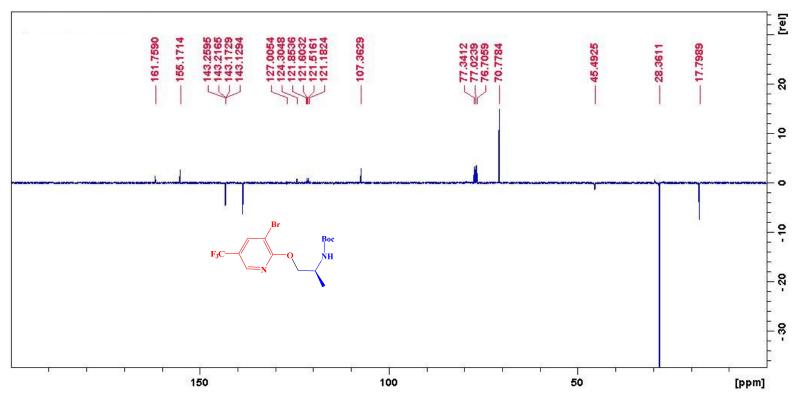

¹³C NMR spectra of 5f

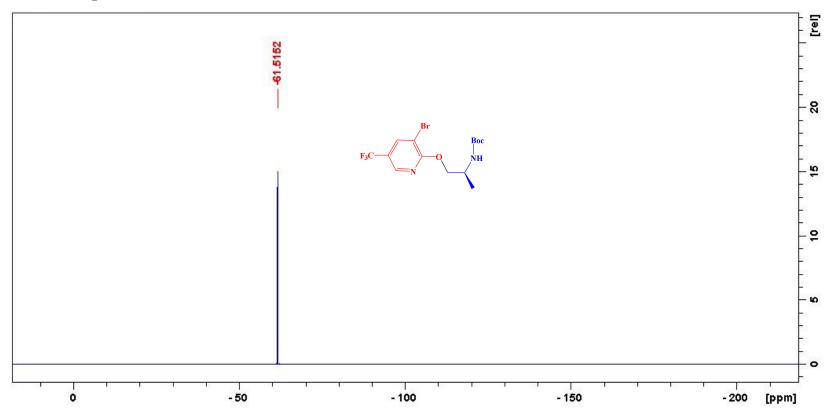

¹H NMR spectra of 5g

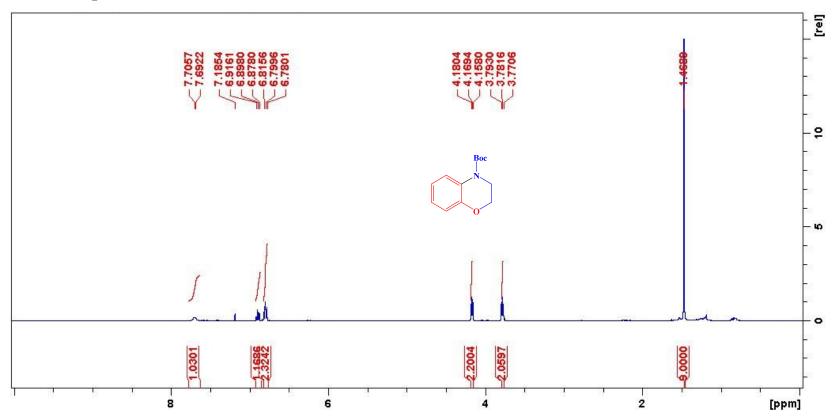

¹³C NMR spectra of 5g

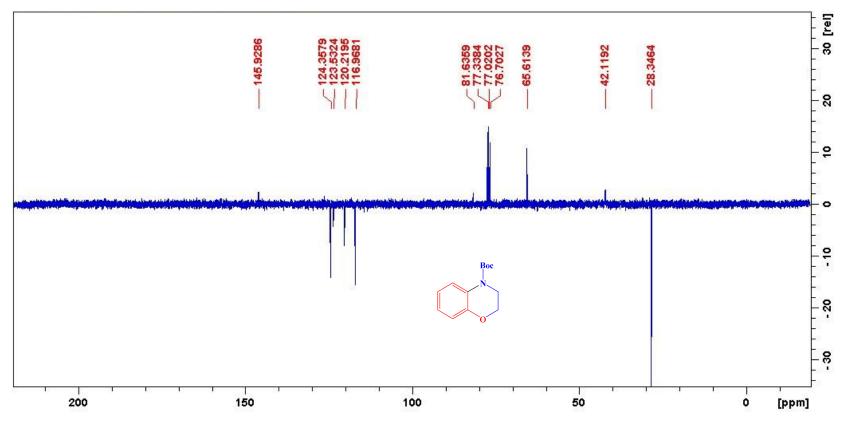

¹H NMR spectra of 5h

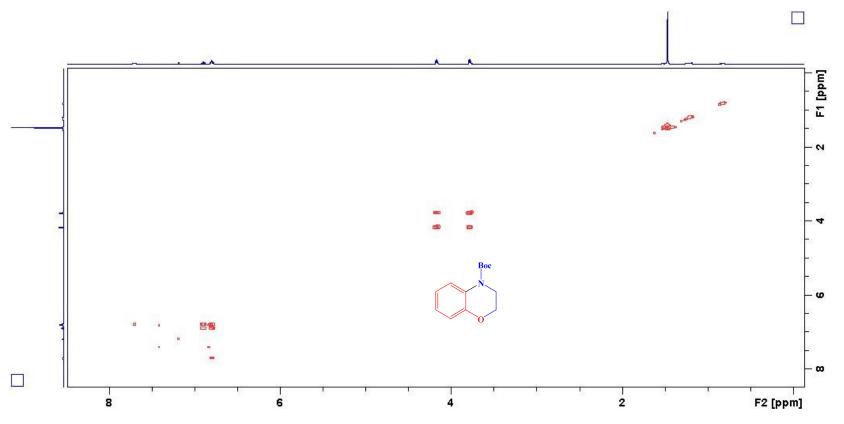

¹³C NMR spectra of 5h

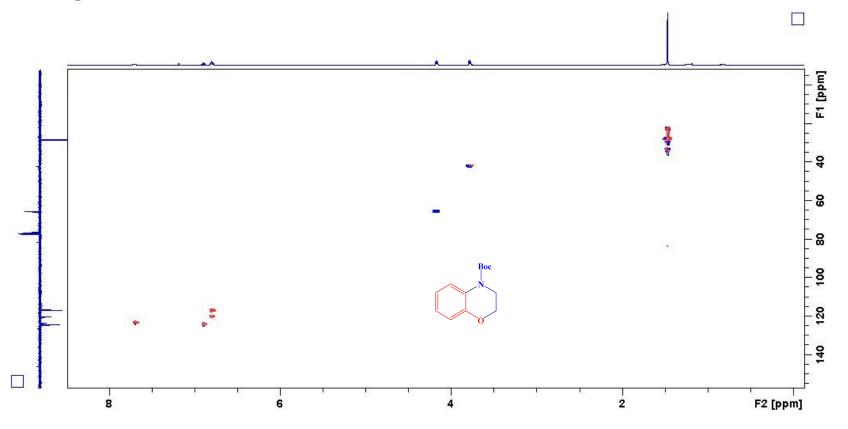

¹⁹F NMR spectra of 5h

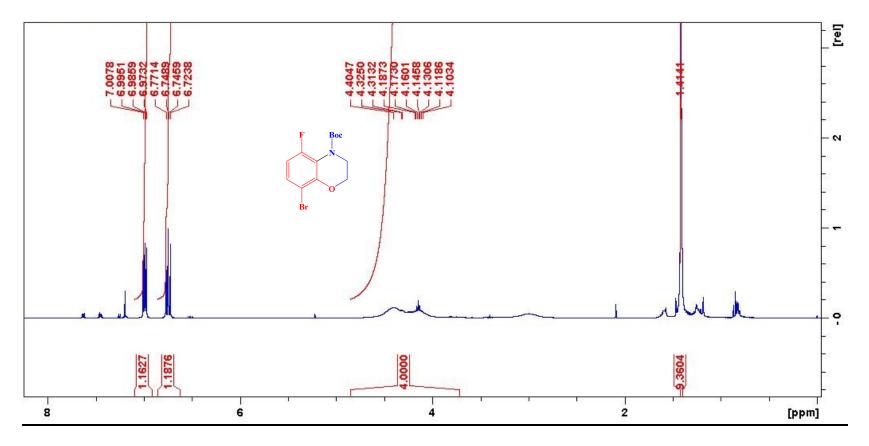

¹H NMR spectra of 5i

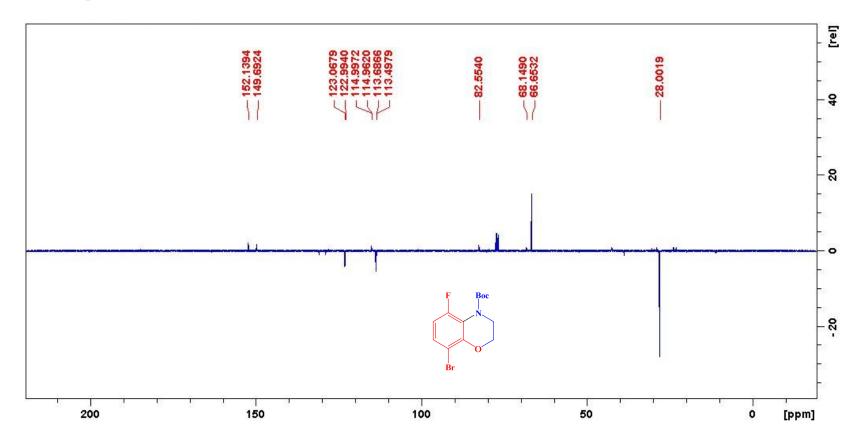

¹³C NMR spectra of 5i

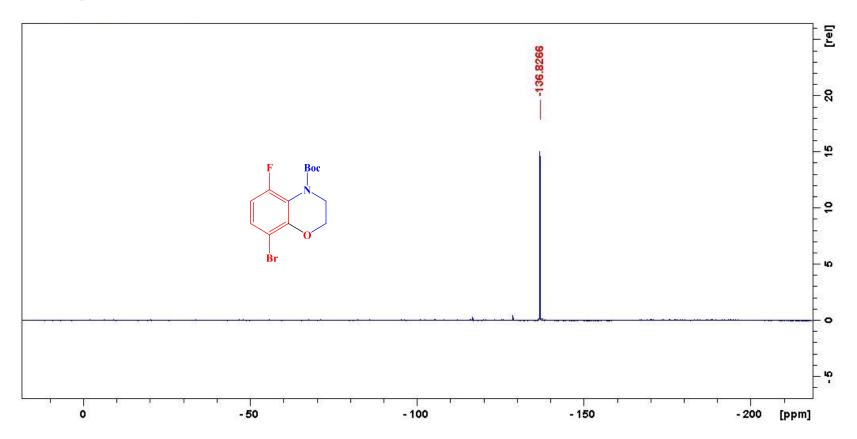

¹⁹F NMR spectra of 5i

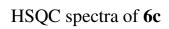

¹H NMR spectra of 6a

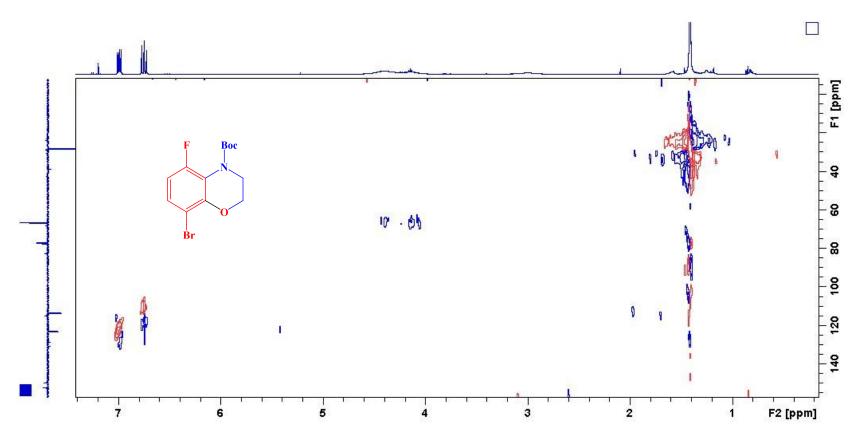

¹³C NMR spectra of 6a

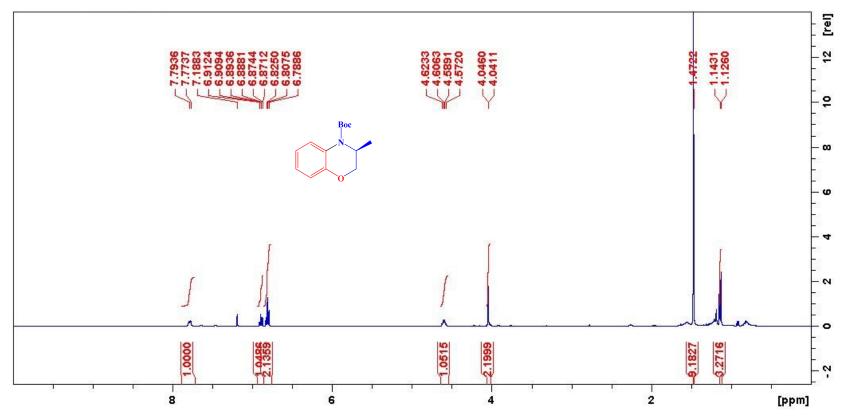


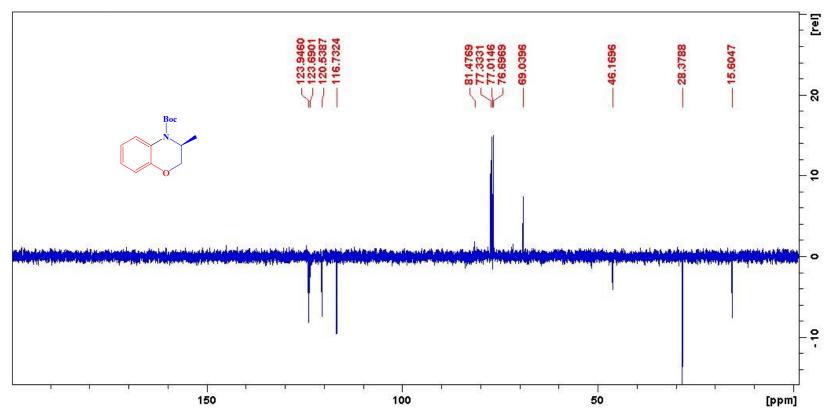

HSQC spectra of 6a


¹H NMR spectra of **6c**

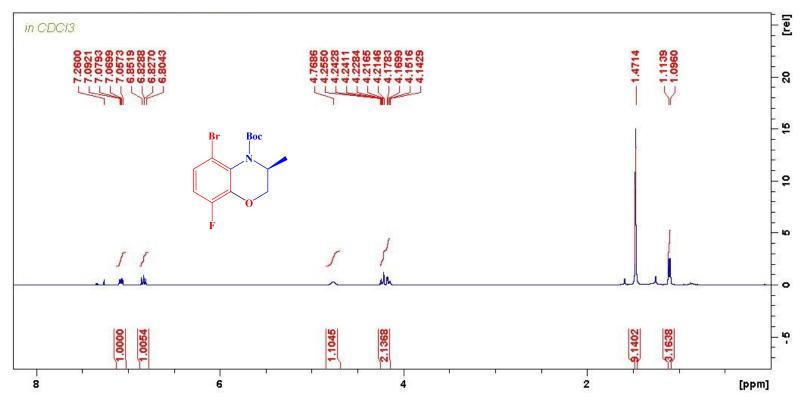



¹³C NMR spectra of **6c**

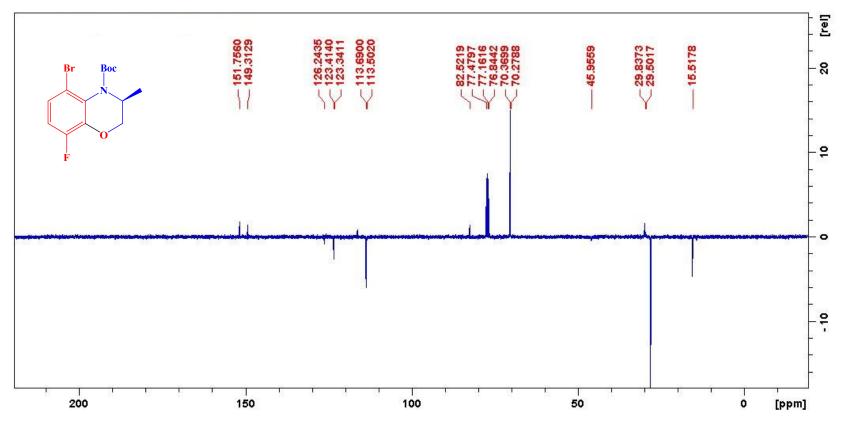

¹⁹F NMR spectra of **6c**



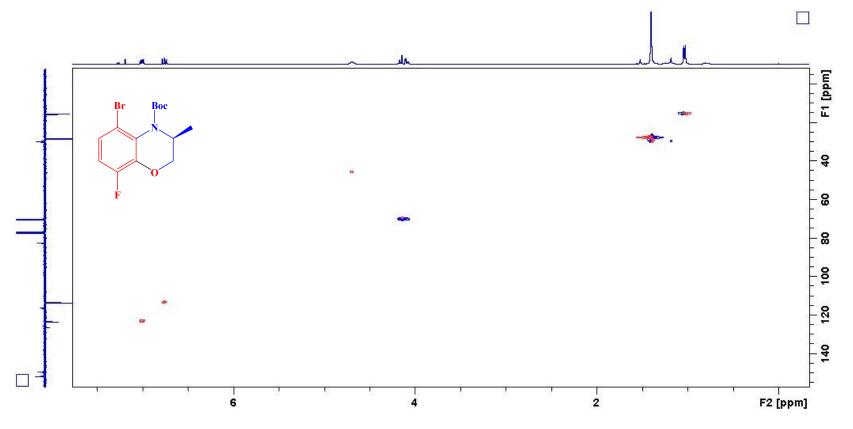
¹H NMR spectra of 6d

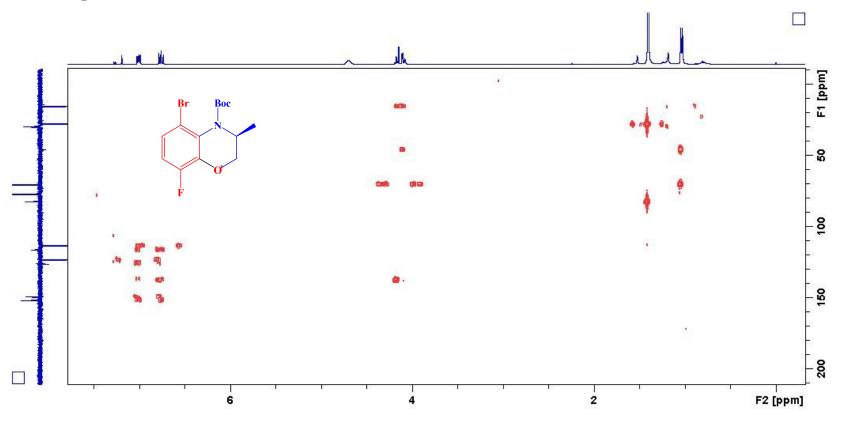


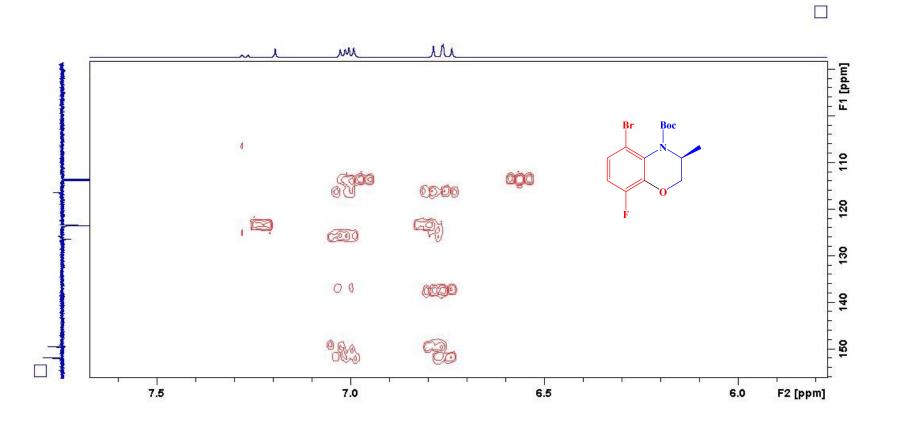
S31

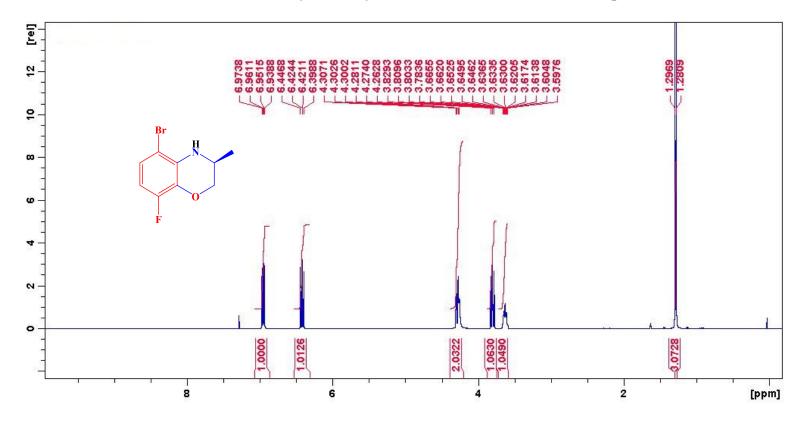

¹³C NMR spectra of 6d

¹H NMR of 6f

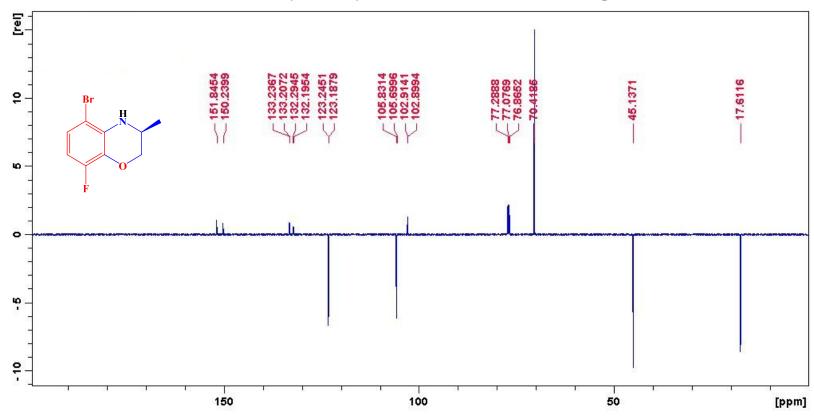

¹³C NMR of 6f



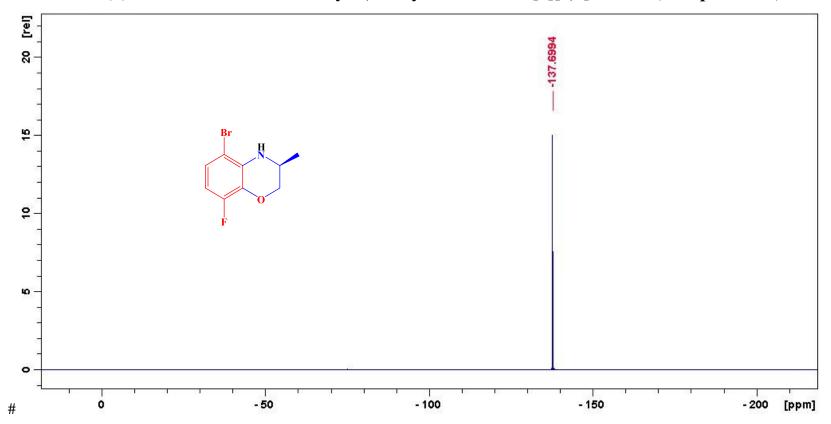



S36

HMBC spectra of 6f



Expansion of HMBC spectra of 6f



¹H NMR of (S)-5-bromo-8-fluoro-3-methyl-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine (6f deprotected):

¹³C NMR of (S)-5-bromo-8-fluoro-3-methyl-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine (6f deprotected):

¹⁹F NMR of (S)-5-bromo-8-fluoro-3-methyl-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine (6f deprotected):

HRMS

5a

Elemental Composition Report

Page 1

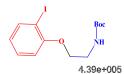
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 36 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 Na: 1-1 Br: 0-1 SZBr 56 (1.856) Cm (1:61) TOF MS ES+

100		33	38.0376 340.	0361						2.150+005
~~~ ~~~ ~~~ ~~~		337 5386	339.0416	341.0398	∩ 343.0397				353 17	14354.0125
0 +	08_333.0813_335.0 32.0334.0	0828 337.5386 336.0	338.0 34	342.042 0.0 342.0	344.0	347. 346.0	2099 34 348.0	9.1876 350.0	352.0	→ 354.0125 → m/z 354.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula	ì	
338.0376	338.0368	0.8	2.4	4.5	612.6	0.0		C13 H1	L8 N 03	Na Br

## **5**b

### **Elemental Composition Report**


#### Page 1

#### Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0

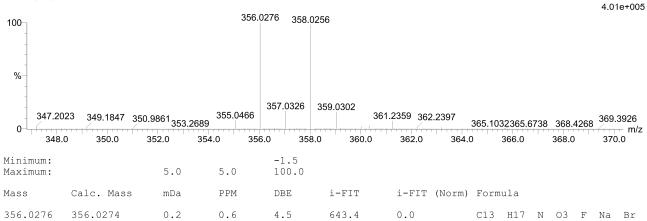
Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 46 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 Na: 1-1 I: 0-1

SZI 8 (0.236) Cm (1:61) TOF MS ES+



100- 			386.023	0						4.3961003	
0 377.17	72379.1573 381.2 7.5 380.0	992_382.134 382,5		7.0280 388.0288 ^{389.027} 387.5 390.0	1 393.08 392.5	58 395.0854 395.0	396.0874	<u>399.3087</u> 400.0	401.9985 ⁴⁰ 402.5	)3.0015 404.9948 	
Minimum: Maximum:		5.0	5.0	-1.5 100.0	002.0	000.0	001.0	100.0	TOLIO	100.0	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula			
386.0230	386.0229	0.1	0.3	4.5	640.5	0.0		C13 H18	N 03	Na I	


### **Elemental Composition Report**

**5**c

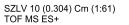
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

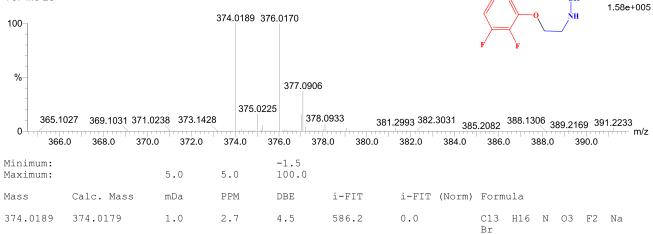
Monoisotopic Mass, Even Electron Ions 82 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 F: 0-1 Na: 1-1 Br: 0-1

SZ1F 58 (1.923) Cm (1:61) TOF MS ÈS+



**5**d


### **Elemental Composition Report**


#### Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

#### Monoisotopic Mass, Even Electron Ions

129 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 F: 0-2 Na: 1-1 Br: 0-1





#### Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 87 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 20-25 N: 0-5 O: 0-5 Br: 0-1 Na: 0-1 SZBrMe 2 (0.034) Cm (1:61) TOF MS ES+ 2.70e+005 352.0529 354.0511 100-% 353.0569 355.0551 356.0558 357.0523 360.3255 ^{361.3299} 363.1131 368.0275 369.0300 343.1076 345.2072 347.2094 349.1851 0------ m/z 342.0 344.0 350.0 352.0 354.0 356.0 358.0 360.0 362.0 364.0 366.0 346.0 348.0 368.0 370.0 Minimum: -1.5 Maximum: 5.0 5.0 100.0 Mass Calc. Mass PPM DBE i-FIT i-FIT (Norm) Formula mDa

### **5**e

352.0529

352.0524

0.5

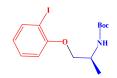
1.4

4.5

639.4

0.0

C14 H20 N O3 Br Na


**Elemental Composition Report** 

**Elemental Composition Report** 

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 48 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 I: 0-1 Na: 1-1

SZIMe 57 (1.890) Cm (1:61) TOF MS ES+





Page 1

100-1				400.0396									01100.000
- - %													
-		204 0267		401.0441	402 0402								
0 ^{_1} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	391.1973 393.0858 ³ 0.0 392.0 394		7.2750 398.0	402.	0461 403.0423 2.0 404.0	408.	3125,409. 408.0	0983 4 410.0		6 4	. The second	81 41 14.0	5.1205 m/z 416.0
Minimum:	.0 382.0 384	.0 380.0	380.0	-1.5	2.0 404.0	400.0	400.0	410.0	. 4	12.0	4	14.0	410.0
Maximum:		5.0	5.0	100.0									
Maes	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula				
400.0396	400.0386	1.0	2.5	4.5	642.4	0.0		C14	H20	N	03	Ι	Na

5f

## 5g

#### **Elemental Composition Report**

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 87 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 F: 0-1 Na: 1-1 Br: 0-1

SZ1FMe 8 (0.236) Cm (1:61) TOF MS ES+





100			370.0419	372.0406					1.020.000
0-4	2367 362.2404 365.	1021	369.5480	*****	4.0494 377	$\frac{1}{1}$	881.3001 382.3041		387.0192 ∱ m/z
360.0	362.0 364.0	366.0 36	8.0 370.0	372.0 3	374.0 376.0	378.0 380.0	382.0 384.0	386.0	388.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm	) Formula		
370.0419	370.0430	-1.1	-3.0	4.5	680.6	0.0	C14 H19 N	03 F	Na Br

## 5h

#### **Elemental Composition Report**

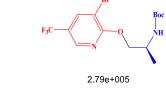
#### Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 138 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 F: 0-2 Na: 1-1 Br: 0-1

SZLVMe 1 (0.034) Cm (1:60) TOF MS ES+



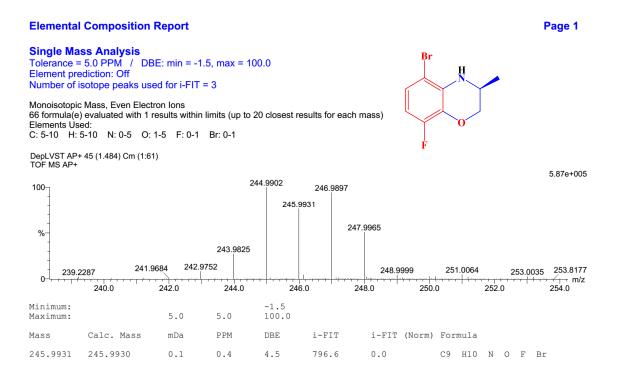

100	381.2986 382.3	⁰²⁹ 384.9686 ³⁸		5 390.0319 9.0375 391.0		93.0838 395.0806	399.0725	403.2464 404.0060 .
0-4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0 382.0	384.0 386.0		390.0	392.0	394.0 396.0 39	98.0 400.0	402.0 404.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
388.0335	388.0336	-0.1	-0.3	4.5	603.8	0.0	C14 H18 N Br	1 03 F2 Na

#### **Elemental Composition Report**

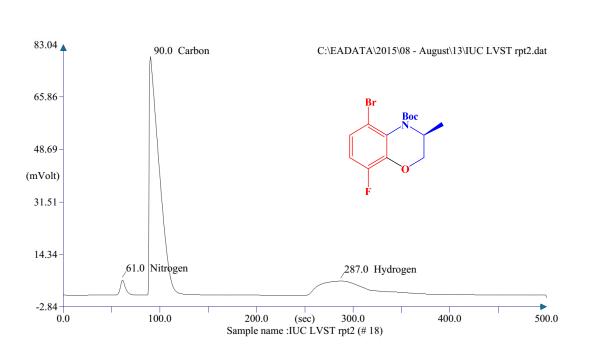
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 212 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 10-15 H: 15-20 N: 0-5 O: 0-5 F: 0-3 Br: 0-1 Na: 1-1

SZCF3NMe 52 (1.720) Cm (1:61) TOF MS ES+




Page 1


100			421.	0363 423.	0342							2	.790+005
0	13.2684 414.2018		119.2793	422.0404		882 426.1911			431.06	§75	433.2	2934	434.4432 ∽⊤ m/z
412.0	414.0 416.0	418.0	420.0	422.0	424.0	426.0 42	28.0	430.0	0	432.0		434.0	)
Minimum: Maximum:		5.0	5.0	-1.5 100.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (1	Norm)	Formu	ıla				
421.0363	421.0351	1.2	2.9	4.5	602.5	0.0		C14 Na	H18	N2	03	F3	Br

## **5i**

## (S)-5-bromo-8-fluoro-3-methyl-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine:



## Elemental analysis for 6f:



Elemental Analysis CHNS

(min) (min)	Element Name	Element %
1 . 0 1 7 1 . 5 0 0 4 . 7 8 3	Nitrogen Carbon Hydrogen	3 . 9 8 1 4 8 . 7 5 2 4 . 6 8 4