Supporting Information

Mild Deuteration Method of Terminal Alkynes

in Heavy Water using Reusable Basic Resin

Tsuyoshi Yamada, Kwihwan Park, Yasunari Monguchi, Yoshinari Sawama* and Hironao Sajiki*

Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

Contents

- 1. General
- 2. Effect of co-solvent in deuteration of 4-phenylethynylbenzene (1b)
- 3. Reuse study of WA30 under D₂O-toluene mixed solvent conditions
- 4. Effect of co-solvent in deuteration of **1m**
- 5. Typical procedures for the deuteration of terminal alkynes
- 6. Reuse test of WA30
- 7. Spectroscopic data of deuterated terminal alkynes
- 8. Reference
- 9. ¹H and ²H NMR spectra of deuterated terminal alkynes

1. General

DIAION WA30 was obtained from Mitsubishi Chemical Corporation, Japan. D₂O (>99.8% D atom) was purchased from Kanto Chemical Co., Inc. ¹H and ²H NMR spectra were recorded by a JEOL AL-400, EX-400 (¹H: 400 MHz) or ECA-500 spectrometer (¹H: 500 MHz, ²H: 61 MHz). Chemical shifts (δ) are expressed in ppm and are internally referenced (7.26 ppm for CDCl₃ for ¹H and ²H NMR, 0.00 ppm for tetramethylsilane for ¹H NMR or 3.31 ppm for CD₃OD-*d*₄ for ¹H NMR). The deuterium content was also assigned by the ²H NMR. Flash column chromatography was performed with Silica Gel 60 N (Kanto Chemical Co., Inc., 63–210 µm spherical, neutral). Substrates (**1a-e** and **1g-m**) were purchasable and used without further purification. The substrate (**1f**) was prepared according to the reference 1.

	H		D	
	/	0 (152 mg/mmol)		
Ph	-	-solvent (1/0.2 mL)	Ph	
1b (0.25 m		rt, 8 h	1b- <i>d</i> 1	
Entry	Co-solvent	D content (%)	Yield (%)	
1	AcOEt	45	Quant.	
2	$\mathrm{Et}_{2}\mathrm{O}$	28	84	
3	<i>n</i> -Hexane	28	96	
4	<i>c</i> -Hexane	41	Quant.	
5	Toluene	80	Quant.	
6^a	Toluene	99	99	
^a For 12 h.				

2. Effect of co-solvent in deuteration of 4-phenylethynylbenzene (1b)

3. Reuse test of WA30 in D₂O-toluene mixed solvent

F		WA30 (152 mg/mm D ₂ O/toluene (5/1)	
1b		rt, 12 h, air	1b- <i>d</i> ₁
Try	D content (%)	Yield (%)	Recovery yield of WA30 (%)
$1^{\rm st}$	99	Quant.	99
2^{nd}	94	95	Quant.
3^{rd}	94	96	94

4. Effect of co-solvent in deuteration of 1m

HO HO HO 1m (0.25 mmol) HO HO HO HO HO HO HO HO HO HO HO HO HO						
co-solvent	Temp. (°C)	Time (h)	D content (% D)	Yield (%)		
_	rt	8	19	84		
Toluene (0.5 mL)	rt	12	28	89		
EtOAc (0.5 mL)	rt	12	43	89		
EtOAc (0.5 mL)	rt	24	49	94		
EtOAc (0.5 mL)	50	24	93	94		

5. Procedures for deuteration of terminal alkynes

5-1. Typical procedure for deuteration of terminal alkynes in D₂O

A suspension of WA30 (38 mg) and an alkyne (0.25 mmol) in D_2O (1 mL) in a round bottom flask was stirred at room temperature or 50 °C under atmospheric conditions. After stirring for adequate time, the reaction mixture was filtrated to remove WA30. The filtrate was extracted with Et₂O (10 mL) and H₂O (5 mL), and then the aqueous layer was further extracted with Et₂O (10 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give the deuterated alkyne (alkyne- d_1).

5-2. Typical Procedure for deuteration of terminal alkynes in D₂O-toluene mixed solvent

A suspension of WA30 (38 mg) and an alkyne (0.25 mmol) in D_2O (1 mL) and toluene (0.2 mL) in a round bottom flask was stirred at room temperature under atmospheric conditions. After stirring for adequate time, the reaction mixture was filtrated to remove WA30. The filtrate was extracted with Et₂O (10 mL) and H₂O (5 mL), and then the aqueous layer was further extracted with Et₂O (10 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give the deuterated alkyne (alkyne- d_1).

6. Reuse test of WA30 in D₂O (Tabl 3)

A suspension of WA30 (152 mg) and **1a** (1.00 mmol) in D₂O (4 mL) in a round bottom flask was stirred at room temperature under atmospheric conditions. After stirring for 8 h, the mixture was filtrated to collect WA30. The filtrate was extracted with Et₂O (20 mL) and H₂O (10 mL), and then the aqueous layer was further extracted with Et₂O (20 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give deuterated alkyne (**1a**-*d*₁). The collected WA30 was washed with H₂O (20 mL) and Et₂O (20 mL) and dried in vacuo for 24 h. The recovered WA30 was reused in the next reaction.

7. Spectroscopic data of deuterated terminal alkynes

1-(Ethynyl-2-*d***)-4-methoxybenzene** (**1a**-*d*₁; **Table 1, entry 1**) : **1a**-*d*₁ (31.1 mg, 233 µmol) was obtained in 93% as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 3.81 (s, 3H), 3.00 (s, 0.01H); ²H NMR (61 MHz,

CHCl₃): δ 3.01 (s).

1-(Ethynyl-2-*d***)-4-phenylbenzene** (**1b**-*d*₁; eq. 1) : **1b**-*d*₁ (44.5 mg, 248 µmol) was obtained in 99% as a colorless solid, ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.53 (m, 6H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.0 Hz, 1H) 3.12 (s, 0.01H); ²H NMR (61 MHz, CHCl₃): δ 3.16 (s).

1-(Ethynyl-2-*d***)-2-methoxybenzene (1c-***d***₁; Table 4, entry 1) : After the purification by silica gel chromatography (eluent; Et₂O/pentanes 1/40), 1b**-*d*₁ (31.5 mg, 237 µmol) was obtained in 95% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 7.46 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.32 (ddd, *J* = 9.0, 7.8, 1.5 Hz, 1H), 6.91 (dd, *J* = 7.8, 7.8 Hz, 1H), 6.89 (d, *J* = 9.0 Hz, 1H), 3.89 (S, 3H), 3.32 (s, 0.04H); ²H NMR (61 MHz, CHCl₃): δ 3.32 (s).

1-(Ethynyl-2-*d***)-2-trifluoromethylbenzene**-*d*₁ (**1d**-*d*₁; **Table 4, entry 2**) : After the purification by silica gel chromatography (eluent; Et₂O/pentanes 1/40), **1d**-*d*₁ (25.3 mg, 148 µmol) was obtained in 59% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.65 (d, *J* = 7.0 Hz, 1H), 7.51 (dd, *J* = 7.5, 7.0 Hz, 1H), 7.45 (dd, *J* = 7.5, 7.5 Hz, 1H), 3.37 (m, 0.01H); ²H NMR (61 MHz, CHCl₃): δ 3.39 (s).

2-(Propynyl-3-*d***)-benzoate** (**1e**-*d*₁**; Table 4, entry 3**) : **1e**-*d*₁ (36.8 mg, 250 µmol) was obtained in 100% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 8.07 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.58 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.45 (dd, *J* = 8.5, 7.5 Hz, 2H), 4.93 (s, 2H), 2.53 (brs, 0.01H); ²H NMR (61 MHz, CHCl₃): δ 2.51 (brs).

[2-(Propynyl-3-*d*-oxy)methyl]-benzene (1f- d_1 ; Table 4, entry 4) : After the purification by silica gel chromatography (eluent; Et₂O/pentanes 1/40), 1f- d_1 (33.0 mg, 225 µmol) was obtained in 90% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.30 (m, 5H), 4.63 (s, 2H), 4.19 (s, 2H), 2.48 (s, 0.01H); ²H NMR (61 MHz, CHCl₃): δ 2.47 (s).

1-Phenylthio-2-propyne-3-*d* (**1g**-*d*₁; **Table 4, entry 5**) : **1g**-*d*₁ (34.6 mg, 248 µmol) was obtained in 99% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 7.45 (dd, *J* = 8.0, 2.0, Hz, 2H), 7.32 (dd, *J* = 8.0, 7.5 Hz, 2H), 7.24 (tt, *J* = 7.5, 2.0 Hz, 1H), 3.60 (s, 2H), 2.23 (brs, 0.05H); ²H NMR (61 MHz, CHCl₃): δ 2.24 (brs).

1-Dodecyne-1-*d* (**1h**-*d*₁; **Table 4, entry 6**) : **1h**-*d*₁ (27.3 mg, 163 µmol) was obtained in 65% as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 2.18 (t, *J* = 7.5 Hz, 2H), 1.93 (brs, 0.03H), 1.52 (tt, *J* = 7.5, 7.5 Hz, 2H), 1.39–1.26 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H); ²H NMR (61 MHz, CHCl₃): δ 1.92 (brs).

1-Amino-4-(ethynyl-2-*d***)-benzene (1i-***d***₁; Table 4, entry 7) : 1i-***d***₁; 91% (26.7 mg, 228 \mumol) as a yellow solid, ¹H NMR (500 MHz, CDCl₃): \delta 7.30 (d,** *J* **= 9.0 Hz, 2H), 6.59 (d,** *J* **= 9.0 Hz, 2H), 3.82 (brs, 2H), 2.97 (s, 0.85H); ²H NMR (61 MHz, CHCl₃): \delta 2.98 (brs).**

1-Amino-4-(ethynyl-2-*d***)-benzene (1i-***d***₁; Table 4, entry 8) : 1i-***d***₁ (28.7 mg, 243 µmol) was obtained in 97% as a yellow solid, ¹H NMR (400 MHz, CDCl₃): \delta 7.29 (d,** *J* **= 8.8 Hz, 2H), 6.58 (d,** *J* **= 8.8 Hz, 2H), 3.80 (brs, 2H), 2.96 (s, 0.03H); ²H NMR (61 MHz, CHCl₃): \delta 2.98 (brs).**

1-(ethynyl-2-*d***)-4-nitrobenzene** (**1***j*-*d*₁**; Table 4, entry 9**) : **1***j*-*d*₁ (34.6 mg, 235 µmol) was obtained in 94% as a yellow solid, ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 3.36 (s, 0.18H); ²H NMR (61 MHz, CHCl₃): δ 3.37 (brs).

1-(Ethynyl-2-*d***)-4-nitrobenzene (1j-***d***₁; Table 4, entry 10) : 1j-***d***₁ (36.0 mg, 243 µmol) was obtained in 97% as an yellow solid, ¹H NMR (400 MHz, CDCl₃): \delta 8.19 (d,** *J* **= 8.2 Hz, 2H), 7.64 (d,** *J* **= 8.2 Hz, 2H), 3.64 (s, 0.06H); ²H NMR (61 MHz, CHCl₃): \delta 3.33 (brs).**

6-(Ethynyl-2-*d*)-2-methoxynaphthalene (1k-*d*₁; Table 4, entry 11) : 1k-*d*₁ (44.7 mg, 245 μmol) was obtained in 98% as a colorless solid, ¹H NMR (500 MHz, CDCl₃): δ 7.93 (s, 1H), 7.67–7.63 (m, 2H), 7.48 (dd, J = 10.0, 1.5 Hz, 1H), 7.14 (dd, J = 9.0, 2.0 Hz, 1H), 7.07 (d, J = 1.5 Hz, 1H), 3.89 (s, 3H), 3.10 (s, 0.81H); ²H NMR (61 MHz, CHCl₃): δ 3.15 (brs).

6-(Ethynyl-2-*d*)-2-methoxynaphthalene (1k-*d*₁; Table 4, entry 12) : 1k-*d*₁ (45.8 mg, 250 μmol) was obtained in 100% as a colorless solid, ¹H NMR (500 MHz, CDCl₃): δ 7.97 (s, 1H), 7.71–7.67 (m, 2H), 7.51 (dd, J = 8.5, 1.0 Hz, 1H), 7.18 (dd, J = 8.5, 2.0 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H) , 3.92 (s, 3H) , 3.14 (s, 0.04H); ²H NMR (61 MHz, CHCl₃): δ 3.12 (brs).

N-[2-(Propynyl-3-*d*-oxy)]-phthalimide (11-*d*₁; Table 4, entry 13) : 11-*d*₁ (43.2 mg, 215 μ mol) was obtained in 86% as a colorless solid, ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.83 (m, 2H), 7.77–7.74 (m, 2H), 4.86 (d, *J* = 2.0 Hz, 2H), 2.59 (t, *J* = 2.0 Hz, 0.81H); ²H NMR (61 MHz, CHCl₃): δ 2.59 (brs).

N-[2-(Propynyl-3-*d*-oxy)]-phthalimide (11-*d*₁; Table 4, entry 14) : 11-*d*₁ (44.6 mg, 223

µmol) was obtained in 89% as a colorless solid, ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.82 (m, 2H), 7.78–7.40 (m, 2H), 4.86 (d, J = 1.0 Hz, 2H), 2.59 (t, J = 1.0 Hz, 0.64H); ²H NMR (61 MHz, CHCl₃): δ 2.59 (m).

(8S,9S,13S,14R,17S)-17-(ethynyl-2-*d*)-8-methyl-7,8,9,11,12,13,14,15,16,17-decahydr o-6H-cyclopenta[a]phenanthrene-3,17-diol (1m-*d*₁; Table 4, entry 16) : 1m-*d*₁ (69.5 mg, 235 μmol) was obtained in 94% as a colorless solid, ¹H NMR (500 MHz, CD₃OD): δ 7.06 (d, J = 8.0 Hz, 1H), 6.54 (dd, J = 8.0, 2.5 Hz, 1H), 6.47 (d, J = 2.5 Hz, 1H), 2.86 (s, 0.07H), 2.80–2.70 (m, 2H), 2.32–2.22 (m, 2H), 2.12–2.08 (m, 1H), 2.00–1.90 (m, 2H), 1.85–1.82 (m, 1H), 1.77–1.70 (m, 2H), 1.44–1.22 (m, 4H), 0.84 (s, 3H); ²H NMR (61 MHz, CH₃OH): δ 2.83 (brs).

8. Reference

1) D. Farran, A. M. Z. Slawin, P. Kirsch and D. O'Hagan, J. Org. Chem., 2009, 74, 7168–7171.

9. ¹H and ²H NMR spectra of deuterated terminal alkynes ¹H NMR of 1a-*d*₁

²H NMR of $1a-d_1$

¹H NMR of $1b-d_1$

S 8

¹H NMR of $1c-d_1$

¹H NMR of $1d-d_1$

²H NMR of $1d-d_1$

¹H NMR of $1e-d_1$

¹H NMR of $1f-d_1$

²H NMR of $1f-d_1$

¹H NMR of $1g-d_1$

¹H NMR of 1h- d_1

¹H NMR of $1i-d_1$

¹H NMR of $1i-d_1$

¹H NMR of $1j-d_1$

¹H NMR of $1j-d_1$

¹H NMR of $1k-d_1$

¹H NMR of $1k-d_1$

¹H NMR of $1l-d_1$

²H NMR of $1l-d_1$

¹H NMR of $1l-d_1$

¹H NMR of $1m-d_1$

²H NMR of $1m-d_1$

