Supporting Information

Compound	Acute Toxicity: LD ₅₀ (Oral)		Dafaranaa
	Mice	Rats	Kelefence
TNT	660 mg/kg	607 mg/kg	Journal of Toxicology and Environmental Health. Vol. 9,
	00		Pg. 565, 1982; International Journal of Toxicology. Vol.
			19, Pg. 169, 2000
RDX	59 mg/kg	100 mg/kg	National Technical Information Service. Vol. AD-A092-
	00	00	531; Toxicology and Applied Pharmacology. Vol. 39, Pg.
			531, 1977
NTO	>5000 mg/kg	>5000 mg/kg	M. W. Smith, M. D. Cliff, Aeronautical and Maritime
	00		Research Laboratory, DSTO-TR-0796

Table S1 Toxicological Information of Studied Explosives

In viva study results show that NTO has LD_{50} values for oral ingestion of more than 5g/kg in mice and rats and hence it is non-toxic to mice and rats compared to others. Among the three, RDX is more toxic and the developed composition based on NTO-TNT will be relatively much less toxic compared to RDX-TNT in toxicological aspects (Ref: *Environmental toxicology and chemistry*, 2015, **34**, 873).

Electrostatic Discharge Sensitivity

ESD data of NTO, TNT and RDX are below given

Compound	ESD (J)	Reference
TNT	0.138	M. W. Smith, M. D. Cliff, Aeronautical
NTO	>4.5	and Maritime Research Laboratory, DSTO- TR-0796 M D Cliff M W Smith
RDX	0.45	DSTO-TR-0998, 2000

From the Table it can be inferred that NTO is much insensitive than RDX and hence, it can be understood that SNTO/TNT composition shall be insensitive than RDX/TNT (as these were physical mixtures).

Figures

Fig. S1 DSC thermograms of Spherical NTO/TNT (60:40) at different heating rates

Fig. S2 DSC thermograms of RDX/TNT (60:40) at different heating rates