Supplementary Information

Hydrothermal synthesis of defective TiO₂ nanoparticles for longwavelength visible light-photocatalytic killing of cancer cells

By Jooran Lee^{*a,c*}, Young Hwa Lee^{*b*}, Joon Sig Choi ^{*b*}, Kwan Seob Park ^{*c*}, Ki Soo Chang ^{*c**} and Minjoong Yoon^{*a,d**}

^aMolecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon 305-764, South Korea, ^bDepartment of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, South Korea, ^cDivision of Scientific Instrumentation, Korea Basic Science Institute, Daejeon 305-806, South Korea, ^dKD Chemical-JNTInc Ltd, Moonpyung-dong, Daedeok-gu, Daejeon 306-220, South Korea

Figure S1. UV-visible diffuse reflectance absorption spectra of *d*-TiO₂ NPs obtained by hydrothermal reaction at different temperatures.

Figure S2. Surface charge or zeta potential of d-TiO₂ NPs (A) and P25 TiO₂ (B) were measured in deionized water at pH 7.0 by laser Doppler velocimetry (LDV).

Figure S3. Size measurements were performed with d-TiO₂ NPs (A) and P25 TiO₂ (B) in deionized water at pH 7.0 by dynamic light scattering (DLS).