Experimental and Theoretical Investigations of Michelia Alba Leaves Extract as a Green Highly-effective Corrosion Inhibitor for Different Steel Materials in Acidic Solution

Lingjie Li^a, Wenting Xu^a, Jinglei Lei^{a*}, Junying Wang^a, Jianxin He^a, Nianbing Li^b,

Fusheng Pan^c

a. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 PR China;
b. School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715PR China;
c. School of Materials Science and Engineering, Chongqing University, Chongqing, 400044 PR China

^{*}Corresponding author. *Tel.*: +86 13983064116; *Fax*: +86 23 65112328; *E-mail address*: <u>JLLei@cqu.edu.cn</u> (Jinglei Lei).

Fig. S1 Michelia alba leaves

Fig. S2 Optimized structures of molecules of the major effective components of MALE in the protonated form.

Fig. S3 LUMO and HOMO distribution of the calculated molecules in the protonated form.

Table ST Chemical compositions of three steel materials used in the present work								
Steel materials	Chemical compositions (wt.%)							
	С	Mn	Si	Р	S	Cr	Fe	
Industrial-pure iron	0.04	0.30	0.20	0.03	0.02	-	Bal.	
303 stainless steel	0.10	1.50	0.05	0.20	0.15	17	Bal.	
Q235 carbon steel	0.17	0.46	0.26	0.0047	0.017	-	Bal.	

 Table S1 Chemical compositions of three steel materials used in the present work

Tuncuonai groups					
	MALE	Industrial	303 stainless	Q235	
	powder	-pure iron	steel	carbon steel	
O—H stretching vibration ^{1,2}	3425.28	3438.92	3445.32	3448.15	
C—H asymmetrical stretching vibration ^{1,3}	2925.18	2917.59	2924.46	2922.85	
C—H symmetric stretching vibration ¹	2854.64	2855.85	2853.78	2852.29	
C==O stretching vibrations ²	1626.78	1644.71	1633.49	1637.38	
C==C stretching vibrations ⁴	1538.96	1538.36	1567.58	1566.13	
C==C stretching vibrations ⁵	1417.18	1454.60	1462.85	1462.27	
symmetrical ring breathing vibration of the epoxy group ⁶	1264.36	—	1280.26	1280.15	
framework vibration of aromatic ring ¹	1116.90	1109.68	1117.84	1146.29	
C—O—C asymmetric stretching vibration ²	1073.96			1087.40	
C—N stretching vibration ¹	1048.77	1029.18		_	
C—H out of plane bending vibration of the aromatic ring ⁶	894.71	890.92	947.31	761.29	
C==C out of plane bending vibration of the aromatic ring ⁶	601.55	666.35	_	599.70	

Table S2 Identification of FTIR bands of different samples in Fig. 5 to corresponding functional groups

components of WALL in the protonated form.							
	GA	Fvo	ρ -HA	Liriodenine			
$E_{\rm HOMO}~({\rm eV})$	-10.84	-10.64	-10.87	-9.91			
$E_{\rm LUMO}~({\rm eV})$	-5.42	-6.13	-6.69	-6.98			
$\Delta E (eV)$	5.42	4.51	4.18	2.93			
$\mu(D)$	8.96	5.48	5.51	1.37			
$\langle \alpha \rangle$	85.20	163.45	87.01	212.85			
η (eV)	2.71	2.26	2.09	1.46			
$\sigma ({ m eV}^{-1})$	0.37	0.44	0.48	0.68			
Pi (eV)	-8.13	-8.38	-8.78	-8.44			
χ (eV)	8.13	8.38	8.78	8.44			
ω	12.20	15.54	18.44	24.42			

Table S3 Calculated quantum chemical parameters for the major effective components of MALE in the protonated form.

References

- 1 X. H. Li, S. D. Deng, H. Fu, J. Appl. Electrochem., 2010, 40, 1641.
- X. H. Li, S. D. Deng, H. Fu, G. N. Mu, J. Appl. Electrochem., 2009, **39**, 1125.
 H. Gerengi, H. I. Sahin, *Ind. Eng. Chem. Res.*, 2012, **51**, 780.
- S. Manov, A. M. Lamazouere, L. Aries, *Corros. Sci.*, 2000, **42**, 1235.
 M. V. Fiori-Bimbi, P. E. Alvarez, H. Vaca, C. A. Gervasi, *Corros. Sci.*, 2015, **92**, 192.
- 6 A. P. Srikanth, T. G. Sunitha, V. Raman, S. Nanjundan, N. Rajendran, Mater. Chem. Phys., 2007, 103, 241.