A novel gold nanoparticles decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione

Balwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati

Supporting Information

Chronoamperometry study

Chronoamperometry was used to calculate the diffusion coefficient (D) and rate constant (k) for the electrocatalytic reaction (Fig. S8-S9). Chronoamperograms were obtained at different concentrations of analytes at a desired potential step (350 and 580 mV for CySH and GSH, respectively) (Fig. S8-S9). The plots of I verses $t^{-1/2}$ exhibited straight lines for different concentrations of analytes (Fig. S8-S9, inset a). Cottrell equation (Eq. 1) was used to calculate the diffusion coefficient for various analytes investigated in this study.¹

$$I_{p} = n F A D^{1/2} c / \pi^{1/2} t^{1/2}$$
(1)

Where I_p is the catalytic current of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of analyte, F is the Faraday constant (96485 C/mole), A is the geometric surface area of the electrode (0.07 cm²), D is the diffusion coefficient (cm²/s), c is the analyte concentration (mol/cm³), and t is the time elapsed (s). The diffusion coefficients were found to be 3.1×10^{-5} and 1.4×10^{-5} cm²/s for CySH and GSH, respectively.

Chronoamperometry was also employed to calculate the rate constant (k) for electrocatalytic reaction through Eq. 2. 2

$$I_{\rm C}/I_{\rm L} = \gamma^{1/2} \left[\pi^{1/2} \operatorname{erf} (\gamma^{1/2}) + \exp(-\gamma)/\gamma^{1/2} \right]$$
(2)

Where I_C is the catalytic current of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of analyte, I_L is the limiting current in the absence of analyte and $\gamma = kC_0 t$ (C_0 is the bulk concentration of analyte) is the argument of the error function. In cases, where γ exceed 2, the error function is almost equal to 1 and the above equation can be reduced to:

$$I_C/I_L = \pi^{1/2} \gamma^{1/2} = \pi^{1/2} (kct)^{1/2}$$
(3)

Where k, c and t are the catalytic rate constant (1/M s), analyte concentration (M), and time elapsed (s), respectively. Eq. 3 can be used to calculate the rate constant of the catalytic process. Based on the slope of I_C/I_L vs. $t^{1/2}$ plot; k can be obtained for a given analyte concentration (Fig. S8-S9, inset b). From the values of the slopes, an average value for k was obtained for the

oxidation of analyte. The rate constant values for electro-catalytic oxidation of CySH and GSH were found as 17.0×10^3 and 3.2×10^3 1/s M, respectively.

FT-IR investigation of synthesized materials

Fig. S1 shows the FT-IR spectra of Nano-ZSM-5 and Nano-ZSM-5-Pr-NH₂ samples. Nano-ZSM-5 exhibited several common IR peaks at 800 cm⁻¹, 970 cm⁻¹, 1100 cm⁻¹, and 1230 cm⁻¹ (Fig. S1).³ The absorption peak at 800 cm⁻¹ is due to Si–O–Si symmetric stretching.⁴ The absorption peaks at 1100 cm⁻¹ and 1230 cm⁻¹ are assigned to asymmetric stretching of Si–O–Si whereas peak at 970 cm⁻¹ is due to the incorporation of Al in the MFI framework and assigned to an asymmetric stretching mode of a [SiO₄] unit bonded to a M⁴⁺ ion (O₃Si–O–M). Nano-ZSM-5-Pr-NH₂ exhibited IR peaks at 2930 and 2842 cm⁻¹, which are characteristics of asymmetric and symmetric –CH₂ stretching vibrations in the propyl chain, respectively.⁴ The absorption bands at 1596 and 1410 cm⁻¹ are assigned to the bending mode of the -NH₂ group and to the scissor vibration of -NH, respectively. The absorption band at 1470 cm⁻¹ is due to –CH₂ bending (scissoring) vibration. The C-N stretching frequency for the aminopropyl moiety is observed at 1189 cm⁻¹. These observations confirmed the incorporation of propylamine moiety on the surface of Nano-ZSM-5.

Figure S1. FT-IR spectra of Nano-ZSM-5 and Nano-ZSM-5-Pr-NH₂ materials investigated in the study.

TGA investigation of synthesized materials

Fig. S2 shows the TGA curves for Nano-ZSM-5 and Nano-ZSM-5-Pr-NH₂. The first weight loss below 473 K in the TGA curves for both the samples indicates the loss of physically adsorbed water molecules. The TGA curve for Nano-ZSM-5 showed no appreciable weight loss after 473 K, confirming that chemical composition did not change in this temperature range. In the TGA curve for Nano-ZSM-5-Pr-NH₂, the second weight loss between 525 K-875 K can be attributed to the decomposition of organic propylamine moiety anchored on the surface of Nano-ZSM-5 and the residual weight refers to the content of Nano-ZSM-5 in Nano-ZSM-5-Pr-NH₂. TGA analysis confirmed that Nano-ZSM-5-Pr-NH₂ contains 11 wt % functionalized organic group (-Pr-NH₂).

Figure S2. TGA thermograms of Nano-ZSM-5 and Nano-ZSM-5-Pr-NH₂ at a heating rate of 10 K/min recorded in air stream.

Figure S3. (a) TEM image and (b) high resolution TEM image of Nano-ZSM-5.

Figure S4. CV responses at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE and bare GCE in 0.1 M KCl solution containing 10 mM of $[Fe(CN)_6]^{3-/4-}$ at a scan rate of 10 mV/s.

Figure S5. Nyquist plots of impedance profiles at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE, and bare GCE in 0.1 M KCl solution containing 10 mM $[Fe(CN)_6]^{3-/4-}$ over the frequency range from 0.1 Hz to 10⁵ Hz at an applied potential of 0.3 V.

Figure S6. Nyquist plots of impedance profiles at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE, and bare GCE in 0.1 M KCl solution containing 10 mM $[Fe(CN)_6]^{3-/4-}$ over the frequency range from 0.1 Hz to 10⁶ Hz at an applied potential of 0.3 V.

Figure S7. CVs at AuNPs(0.5%)-Nano-ZSM-5/GCE containing (a) CySH (10 μ M), (b) GSH (10 μ M) in 0.1 M PBS (pH 7.4) at various scan rates (10-600 mV/s). Inset shows the plot of oxidation peak currents vs. square root of scan rates. (c)-(d) Plot of log I_p and log scan rate (v) for the electrochemical oxidation of (c) CySH, and (d) GSH at AuNPs(0.5%)-Nano-ZSM-5/GCE.

Figure S8. Chronoamperograms obtained at AuNPs(0.5%)-Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 100 μ M, (iii) 200 μ M, and (iv) 300 μ M of CySH in 10 mL 0.1 M PBS (pH 7.4). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Figure S9. Chronoamperograms obtained at AuNPs(0.5%)-Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 100 μ M, (iii) 200 μ M, and (iv) 300 μ M of GSH in 10 mL 0.1 M PBS (pH 7.4). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Figure S10. CVs of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of (a) CySH (10 μ M) and (b) GSH (10 μ M) in 0.1 M PBS (pH 7.4) at a scan rate of 50 mV/s. Inset shows the tafel plot of CV for (a) CySH and (b) GSH at AuNPs(0.5%)-Nano-ZSM-5/GCE.

Figure S11. DPVs in the presence of 1 μ M each of CySH and GSH in 10 mL of 0.1 M PBS (pH 7.4) at AuNPs(0.1%)-Nano-ZSM-5/GCE, AuNPs(0.5%)-Nano-ZSM-5/GCE, AuNPs(1%)-Nano-ZSM-5/GCE, and AuNPs(3%)-Nano-ZSM-5/GCE. DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

Figure S12. Comparison of DPV of binary mixture containing 1 μ M each of CySH and GSH at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE, and bare GCE in 0.1 M PBS (pH 7.4). DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

Figure S13. The current response in the presence of 1 μ M each of CySH and GSH (a) at different freshly prepared Au(0.5%)-Nano-ZSM-5/GCEs (n=5). Inset shows corresponding DPV curves at 5 different Au(0.5%)-Nano-ZSM-5/GCEs in the presence of 1 μ M each of CySH and GSH and (b) at seven different measurements (30 days time period at the interval of every 5 days) using same Au(0.5%)-Nano-ZSM-5/GCE. Inset shows corresponding DPV curves at 7 different measurements using same Au(0.5%)-Nano-ZSM-5/GCE in the presence of 1 μ M each of CySH and GSH for 30 days time period at the interval of every 5 days.

Figure S14. CVs for 50 cycles at AuNPs(0.5%)-Nano-ZSM-5/GCE at in 0.1 M PBS (pH 7.4) at a scan rate of 50 mV/s.

Figure S15. CVs for 50 cycles at AuNPs(0.5%)-Nano-ZSM-5/GCE at a scan rate 50 mV/s in 0.1 M PBS (pH 7.4) in the presence of (a) CySH (10 μ M) and (b) GSH (10 μ M).

Figure S16. DPV responses of AuNPs(0.5%)-Nano-ZSM-5/GCE in 0.1 M PBS (pH 7.4) containing 1 μ M each of CySH and GSH in the absence and in the presence of 500 μ M each of different interfering species. DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

S.No.	Electrode material	Analyte	Linear range (M)	Detection	Reference
				limit (M)	
1.	Cyclotricatechylene	CySH	$0 \ \mu M - 40 \ \mu M$	0.6 μΜ	5
2.	Sb-doped ZnO	CySH	75 nM – 100 μM	25 nM	6
	nanowires				
3.	Manganese dioxide-	CySH	0.5 μM – 680 μM	22 nM	7
	carbon nanocomposite				
4.	MWCNTs/gold	CySH	$5 \ \mu M - 200 \ \mu M$	8.25 nM	8
	nanorods				
5.	Graphene oxide/Au	CySH	$50 \text{ nM} - 20 \mu \text{M}$	20 nM	9
	nanocluster				
6.	Ce-doped Mg-Al	CySH	$10 \ \mu M - 5400 \ \mu M$	4.2 μΜ	10
	layered double				
	hydroxide				
7.	Manganese vanadate	CySH	50 nM – 2 mM	26 nM	11
	nanorods				
8.	FePt/CNTs	GSH	$80 \text{ nM} - 220 \mu\text{M}$	50 nM	12
	nanocomposite				
9.	Cu ₂ O/NiO _x /graphene	GSH	2 µM – 1.3 mM	300 nM	13
	oxide				
10.	Co-based metal-	GSH	2.5 μM – 950 μM	2.5 μΜ	14
	organic polymer				
11.	Cobalt phthalocyanine	CySH	$1 \ \mu M - 16 \ mM$	1 µM	15
	-nitrogen doped	GSH	$1 \ \mu M - 16 \ mM$	1 µM	
	graphene				
12.	Au(5%)-Nano-ZSM-5	CySH	$2 \text{ nM} - 800 \mu M$	0.3 nM	This work
		GSH	$3 \text{ nM} - 800 \ \mu\text{M}$	0.6 nM	

Table S1. Comparison of Au(0.5%)-Nano-ZSM-5/GCE with other electrodes reported in the literature for CySH and GSH detection.

References

- 1. M. Sharp, M. Petersson and K. Edström, J. Electroanal. Chem., 1979, 95, 123-130.
- 2. Z. Galus, G. Reynolds and S. Marcinkiewicz, *Fundamentals of electrochemical analysis*, *Ellis Horwood Chichester*, 1976, **328**.
- 3. P. Ratnasamy, D. Srinivas and H. Knözinger, Adv. Catal., 2004, 48, 1-169.
- 4. D. Jung, C. Streb and M. Hartmann, Int. J. Mol. Sci., 2010, 11, 762-778.
- 5. P. T. Lee, J. E. Thomson, A. Karina, C. Salter, C. Johnston, S. G. Davies and R. G. Compton, *Analyst*, 2015, **140**, 236-242.
- 6. M. Ahmad, C. Pan and J. Zhu, J. Mater. Chem., 2010, 20, 7169-7174.
- 7. C. Xiao, J. Chen, B. Liu, X. Chu, L. Wu and S. Yao, *PCCP*, 2011, **13**, 1568-1574.
- F. d. A. dos Santos Silva, M. G. A. da Silva, P. R. Lima, M. R. Meneghetti, L. T. Kubota and M. O. F. Goulart, *Biosens. Bioelectron.*, 2013, 50, 202-209.
- S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song and S. Yu, *Biosens. Bioelectron.*, 2012, **31**, 49-54.
- 10. Y. Wang, W. Peng, L. Liu, F. Gao and M. Li, *Electrochim. Acta*, 2012, **70**, 193-198.
- 11. L. Pei, Y. Pei, Y. Xie, C. Fan and H. Yu, CrystEngComm, 2013, 15, 1729-1738.
- 12. R. Moradi, S. Sebt, H. Karimi-Maleh, R. Sadeghi, F. Karimi, A. Bahari and H. Arabi, *PCCP*, 2013, **15**, 5888-5897.
- B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang and Q. Huo, *Electrochim. Acta*, 2013, **104**, 78-83.
- B. Yuan, R. Zhang, X. Jiao, J. Li, H. Shi and D. Zhang, *Electrochem. Commun.*, 2014, 40, 92-95.
- H. Xu, J. Xiao, B. Liu, S. Griveau and F. Bedioui, *Biosens. Bioelectron.*, 2015, 66, 438-444.