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Chronoamperometry study
Chronoamperometry was used to calculate the diffusion coefficient (D) and rate constant (k) for
the electrocatalytic reaction (Fig. S8-S9). Chronoamperograms were obtained at different
concentrations of analytes at a desired potential step (350 and 580 mV for CySH and GSH,

respectively) (Fig. S8-S9). The plots of I verses t*?

exhibited straight lines for different
concentrations of analytes (Fig. S8-S9, inset a). Cottrell equation (Eqg. 1) was used to calculate

the diffusion coefficient for various analytes investigated in this study.’
l,=nFAD"c/n' t* 1)

Where I, is the catalytic current of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of analyte,
F is the Faraday constant (96485 C/mole), A is the geometric surface area of the electrode (0.07
cm?), D is the diffusion coefficient (cm?s), ¢ is the analyte concentration (mol/cm®), and t is the
time elapsed (s). The diffusion coefficients were found to be 3.1 x 10° and 1.4 x 10~ cm?/s for
CySH and GSH, respectively.

Chronoamperometry was also employed to calculate the rate constant (k) for electro-

catalytic reaction through Eq. 2. 2

I/l =y"* [ erf (v"?) + exp (-y)y"?] )

Where Ic is the catalytic current of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of analyte,
I is the limiting current in the absence of analyte and y = kCot (Co is the bulk concentration of
analyte) is the argument of the error function. In cases, where y exceed 2, the error function is

almost equal to 1 and the above equation can be reduced to:

IC/IL - nllz Yl/z — nllz (kCt) 1/2 (3)

Where k, ¢ and t are the catalytic rate constant (1/M s), analyte concentration (M), and time

elapsed (s), respectively. Eq. 3 can be used to calculate the rate constant of the catalytic process.
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Based on the slope of I¢/l. vs. t7“ plot; k can be obtained for a given analyte concentration (Fig.

S8-S9, inset b). From the values of the slopes, an average value for k was obtained for the



oxidation of analyte. The rate constant values for electro-catalytic oxidation of CySH and GSH
were found as 17.0 x 10° and 3.2 x 10% 1/s M, respectively.



FT-IR investigation of synthesized materials

Fig. S1 shows the FT-IR spectra of Nano-ZSM-5 and Nano-ZSM-5-Pr-NH; samples. Nano-
ZSM-5 exhibited several common IR peaks at 800 cm*, 970 cm %, 1100 cm*, and 1230 cm™*
(Fig. S1).° The absorption peak at 800 cm* is due to Si-O-Si symmetric stretching.* The
absorption peaks at 1100 cm* and 1230 cm™ are assigned to asymmetric stretching of Si—O—Si
whereas peak at 970 cm™ is due to the incorporation of Al in the MFI framework and assigned to
an asymmetric stretching mode of a [SiO4] unit bonded to a M** ion (O3Si-O-M). Nano-ZSM-5-
Pr-NH; exhibited IR peaks at 2930 and 2842 cm™, which are characteristics of asymmetric and
symmetric —CH stretching vibrations in the propyl chain, respectively.” The absorption bands at
1596 and 1410 cm™ are assigned to the bending mode of the -NH, group and to the scissor
vibration of -NH, respectively. The absorption band at 1470 cm™is due to —CH, bending
(scissoring) vibration. The C-N stretching frequency for the aminopropyl moiety is observed at
1189 cm™. These observations confirmed the incorporation of propylamine moiety on the surface
of Nano-ZSM-5.
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Figure S1. FT-IR spectra of Nano-ZSM-5 and Nano-ZSM-5-Pr-NH;, materials investigated in
the study.



TGA investigation of synthesized materials

Fig. S2 shows the TGA curves for Nano-ZSM-5 and Nano-ZSM-5-Pr-NH,. The first weight loss
below 473 K in the TGA curves for both the samples indicates the loss of physically adsorbed
water molecules. The TGA curve for Nano-ZSM-5 showed no appreciable weight loss after 473
K, confirming that chemical composition did not change in this temperature range. In the TGA
curve for Nano-ZSM-5-Pr-NH,, the second weight loss between 525 K-875 K can be attributed
to the decomposition of organic propylamine moiety anchored on the surface of Nano-ZSM-5
and the residual weight refers to the content of Nano-ZSM-5 in Nano-ZSM-5-Pr-NH,. TGA
analysis confirmed that Nano-ZSM-5-Pr-NH; contains 11 wt % functionalized organic group (-
Pr-NH,).
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Figure S2. TGA thermograms of Nano-ZSM-5 and Nano-ZSM-5-Pr-NHj at a heating rate of 10

K/min recorded in air stream.
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Figure S3. (a) TEM image and (b) high resolution TEM image of Nano-ZSM-5.
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Figure S4. CV responses at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE and bare
GCE in 0.1 M KClI solution containing 10 mM of [Fe(CN)s]*"™* at a scan rate of 10 mV/s.
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Figure S5. Nyquist plots of impedance profiles at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-
ZSM-5/GCE, and bare GCE in 0.1 M KCI solution containing 10 mM [Fe(CN)s]*™* over the
frequency range from 0.1 Hz to 10° Hz at an applied potential of 0.3 V.
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Figure S6. Nyquist plots of impedance profiles at AuNPs(0.5%)-Nano-ZSM-5/GCE, Nano-

ZSM-5/GCE, and bare GCE in 0.1 M KCI solution containing 10 mM [Fe(CN)s]*™* over the
frequency range from 0.1 Hz to 10° Hz at an applied potential of 0.3 V.
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Figure S7. CVs at AuNPs(0.5%)-Nano-ZSM-5/GCE containing (a) CySH (10 uM), (b) GSH (10
MM) in 0.1 M PBS (pH 7.4) at various scan rates (10-600 mV/s). Inset shows the plot of
oxidation peak currents vs. square root of scan rates. (c)-(d) Plot of log I, and log scan rate (v)

for the electrochemical oxidation of (c) CySH, and (d) GSH at AuNPs(0.5%)-Nano-ZSM-
5/GCE.
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Figure S8. Chronoamperograms obtained at AUNPs(0.5%)-Nano-ZSM-5/GCE (i) in the absence
and in the presence of (ii) 100 uM, (iii) 200 pM, and (iv) 300 uM of CySH in 10 mL 0.1 M PBS
(pH 7.4). Inset: (a) Dependence of current on the time™? derived from the chronoamperogram
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data. (b) Dependence of I¢/1.on time'? derived from the data of chronoamperograms.
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Figure S9. Chronoamperograms obtained at AUNPs(0.5%)-Nano-ZSM-5/GCE (i) in the absence
and in the presence of (ii) 100 uM, (iii) 200 puM, and (iv) 300 uM of GSH in 10 mL 0.1 M PBS
(pH 7.4). Inset: (a) Dependence of current on the time™? derived from the chronoamperogram

data. (b) Dependence of I¢/1.on time'? derived from the data of chronoamperograms.
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Figure S10. CVs of AuNPs(0.5%)-Nano-ZSM-5/GCE in the presence of (a) CySH (10 uM) and
(b) GSH (10 uM) in 0.1 M PBS (pH 7.4) at a scan rate of 50 mV/s. Inset shows the tafel plot of
CV for (a) CySH and (b) GSH at AuNPs(0.5%)-Nano-ZSM-5/GCE.
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Figure S11. DPVs in the presence of 1 uM each of CySH and GSH in 10 mL of 0.1 M PBS (pH
7.4) at AuNPs(0.1%)-Nano-ZSM-5/GCE, AuNPs(0.5%)-Nano-ZSM-5/GCE, AuNPs(1%)-Nano-

ZSM-5/GCE, and AuNPs(3%)-Nano-ZSM-5/GCE. DPV parameters were selected as: pulse
amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.
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Figure S12. Comparison of DPV of binary mixture containing 1 uM each of CySH and GSH at
AUNPs(0.5%)-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE, and bare GCE in 0.1 M PBS (pH 7.4).

DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20
mV/s.
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Figure S13. The current res

ponse in the presence of 1 uM each of CySH and GSH (a) at
different freshly prepared Au(0.5%)-Nano-ZSM-5/GCEs (n=5). Inset shows corresponding DPV
curves at 5 different Au(0.5%)-Nano-ZSM-5/GCEs in the presence of 1 uM each of CySH and
GSH and (b) at seven different measurements (30 days time period at the interval of every 5
days) using same Au(0.5%)-Nano-ZSM-5/GCE. Inset shows corresponding DPV curves at 7
different measurements using same Au(0.5%)-Nano-ZSM-5/GCE in the presence of in the

presence of 1 uM each of CySH and GSH for 30 days time period at the interval of every 5 days.
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Figure S14. CVs for 50 cycles at AuNPs(0.5%)-Nano-ZSM-5/GCE at in 0.1 M PBS (pH 7.4) at
a scan rate of 50 mV/s.
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Figure S15. CVs for 50 cycles at AUNPs(0.5%)-Nano-ZSM-5/GCE at a scan rate 50 mV/s in 0.1
M PBS (pH 7.4) in the presence of (a) CySH (10 uM) and (b) GSH (10 uM).
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Figure S16. DPV responses of AuNPs(0.5%)-Nano-ZSM-5/GCE in 0.1 M PBS (pH 7.4)
containing 1 uM each of CySH and GSH in the absence and in the presence of 500 uM each of
different interfering species. DPV parameters were selected as: pulse amplitude: 50 mV, pulse
width: 50 ms, scan rate: 20 mV/s.
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Table S1. Comparison of Au(0.5%)-Nano-ZSM-5/GCE with other electrodes reported in the
literature for CySH and GSH detection.

S.No. | Electrode material | Analyte | Linear range (M) Detection Reference
limit (M)
1. Cyclotricatechylene | CySH 0 UM — 40 pM 0.6 uM >
2. Sb-doped ZnO CySH 75 nM — 100 uM 25 nM °
nanowires
3. Manganese dioxide- | CySH 0.5 M — 680 pM 22 nM !
carbon nanocomposite
4. MWCNTSs/gold CySH 5 UM — 200 uM 8.25 nM 8
nanorods
5. Graphene oxide/Au CySH 50 nM — 20 pM 20 nM ?
nanocluster
6. Ce-doped Mg-Al CySH 10 uM - 5400 pM 4.2 uM 10
layered double
hydroxide
7. Manganese vanadate | CySH 50 nM — 2 mM 26 M H
nanorods
8. FePt/CNTs GSH 80 nM — 220 uM 50 nM 12
nanocomposite
9. | Cu,O/NiOy/graphene | GSH 2 UM - 1.3 mM 300 nM 13
oxide
10. Co-based metal- GSH 2.5 pM - 950 pM 2.5 UM 1
organic polymer
11. | Cobalt phthalocyanine | CySH 1M —16 mM 1uM B
—nitrogen doped GSH 1uM - 16 mM 1uM
graphene
12. | Au(5%)-Nano-ZSM-5 | CySH 2 nM - 800 uM 0.3nM This work
GSH 3 nM -800 uM 0.6 nM
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