Tridentate P,N,N-ligand promoted copper-catalyzed [3+2] cycloaddition of propargylic esters with β -enamino esters: synthesis of highly functionalized pyrroles

Qing Li^{ab}, Chuan-Jin Hou^{*ab}, Yun-Ze Hui^c, Yan-Jun Liu^a, Rui-Feng Yang^a,

Xiang-Ping Hu^{*b}

 ^a School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
 ^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 ^cFaculty of Engineering and Built Environment, University of Newcastle, Callaghan, NSW 2308, Australia

Supporting Information

General Information	S2
General Procedure for Preparation of P,N,N-Ligand L ₆	S2
General Procedure for the Synthesis of Highly Functionalized Pyrroles	S4
References	.S10
Copies of NMR Spectra	.S11

General Information

All reactions were carried out under a nitrogen atmosphere. Solvents were purified by standard procedure before use. Commercial reagents were used without further purification. Flash chromatography was performed on silica gel 60 (40-63µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.28). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker 100 MHz spectrometer. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent ($CDCl_3 =$ δ 77.07). Phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Bruker 162 MHz spectrometer. Chemical shifts for phosphorus are reported in parts per million downfield from the external 85% H₃PO₄ signal at 0.0 ppm as a standard. Data are represented as follows: chemical shift, multiplicity (br = broad, s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz **1**^[1], $2^{[2]}$ integration. propargylic esters β-enamino esters and (Hz), (2-(diphenylphosphino)phenyl)methanamine (5)^[3] were prepared following the method from the literature.

General Procedure for the Synthesis of P,N,N-Ligand L₆

To a solution of benzylamine 4 (1.07g, 10.0 mmol) in dry ether (10 mL) at -35° C was added dropwise *n*-BuLi (4.0 mL, 2.5 M in hexane, 10.0 mmol). The resulting solution was stirred at -35°C for 15 minutes, and the TMSCl (1.39 mL, 11.0 mmol) was added slowly at the same temperature. The reaction mixture was stirred for 1 hour and then n-BuLi (12 mL, 2.5 M in hexane, 30.0 mmol) was added dropwise. After the addition was completed, the reaction mixture was stirred at -35°C for 3h. The reaction mixture was slowly warm to room temperature and stirred overnight. The reaction mixture was cooled at -35°C again, and a solution of chlorodiphenylphosphine (1.8 mL, 10.0 mmol) in ether (10 mL) was added dropwise with 1 hour. The reaction mixture was stirred for another 3 hours at the same temperature, and then warmed to room temperature. After stirring for another 4 hours, a solution of 1M HCl was added slowly until the reaction mixture became clear in both phases. The aqueous phase was extracted with ether. The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound 5 as white solid.

(2-(diphenylphosphino)phenyl)methanamine

Mp: 105-106°C; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 1H), 7.37-7.31 (m, 7H), 7.29-7.24 (m, 4H), 7.16 (t, J = 7.4 Hz, 1H), 6.91-6.84 (m, 1H), 4.02 (s, 2H), 1.76 (br, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 147.3, 136.4, 135.1, 134.0, 133.8, 133.5, 129.3, 128.8, 128.6, 128.5, 127.9, 127.1, 45.2; ³¹P NMR (162 MHz, CDCl₃) δ -15.90; HRMS calcd. for C₁₉H₁₉NP ([M+H]+): 292.1225, found: 291.1259.

To a solution of amine 5 (291mg, 1.0 mmol) in 8 mL of EtOH was added picolinaldehyde (107 mg, 1.0 mmol) and anhydrous MgSO₄ (200 mg). The reaction mixture was refluxed for 4 h, and then cooled to room temperature. MgSO₄ were removed by the filtration. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography to give the corresponding ligand L_6 as a light yellow liquid.

(E)-1-(2-(diphenylphosphino)phenyl)-N-(pyridin-2-ylmethylene)methanamine

¹H NMR (400 MHz, CDCl₃) δ 8.62-8.55 (m, 1H), 8.34 (s, 1H), 7.75-7.68 (m, 1H), 7.66-7.57 (m, 1H), 7.47-7.44 (m, 1H), 7.37-7.33 (m, 1H), 7.32-7.28 (m, 8H), 7.27-7.22 (m,

3H), 7.21-7.16 (m, 1H), 6.98-6.88 (m, 1H), 5.12 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 154.6, 149.2, 143.5, 143.3, 136.7, 136.6, 136.3, 135.6, 134.1, 133.9, 133.8, 129.2, 128.8, 128.7, 128.6, 128.5, 128.4, 127.4, 124.6, 121.3, 63.0; ³¹P NMR (162 MHz, CDCl₃) δ -15.51; HRMS calc. for C₂₅H₂₂N₂P ([M+H]⁺): 381.1521, found: 381.1527.

General Procedure for the Synthesis of Highly Functionalized Pyrroles

A solution of Cu(OTf)₂ (5.4 mg, 0.015 mmol) and L₆ (6.3 mg, 0.0165 mmol) in 1 mL of anhydrous methanol placed in an oven-dried Schlenk flask was stirred at room temperature under a nitrogen atmosphere for 1 h. A solution of propargylic esters **1** (0.36 mmol), β -enamino esters **2** (0.3 mmol) and Et₃N (50 uL, 0.36 mmol) in 2 mL of anhydrous methanol was added. The mixture was stirred at room temperature for 12 h. The reaction mixture was quenched with 1M HCl and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the corresponding pyrroles products **3** as white solid..

Methyl 5-methyl-2,4-diphenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 114-116°C; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.27 (m, 8H), 7.23-7.19 (m, 6H), 3.29 (s, 3H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 145.1, 138.1, 136.5, 134.0, 131.6, 131.1, 130.1, 130.0, 129.7, 128.6, 127.9, 127.1, 127.0, 126.9, 126.0, 119.2, 51.1, 21.6, 13.6; HRMS calc. for $C_{26}H_{24}NO_4S$ ([M+H]⁺): 446.1426, found: 446.1425.

Methyl 4-(2-chlorophenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 90-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.38-7.36 (m, 1H), 7.35-7.26 (m, 6H), 7.25-7.16 (m, 5H), 3.27 (s, 3H), 2.41 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 145.0, 139.1, 136.7, 134.8, 133.5, 132.0, 131.6, 131.0, 129.7, 129.2, 128.8, 128.6, 126.9, 126.8, 126.3, 123.6, 51.0,

21.6, 13.7; HRMS calc. for $C_{26}H_{23}NO_4SCl$ ([M+H]⁺): 480.1036, found: 480.1040.

Methyl 4-(3-chlorophenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 121-123°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 8H), 7.23-7.17 (m, 4H), 7.12-7.10 (m, 1H), 3.30 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 145.2, 138.4, 136.4, 136.0, 133.7, 131.6, 130.9, 130.2, 129.8, 129.1, 128.7, 128.5, 127.3, 127.1, 127.0,

124.7, 118.7, 51.1, 21.7, 13.6; HRMS calc. for $C_{26}H_{23}NO_4SC1$ ([M+H]⁺): 480.1036, found: 480.1044.

Methyl 4-(4-chlorophenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 142-144°C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 7H), 7.21-7.15 (m, 6H), 3.30 (s, 3H), 2.43 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 145.2, 138.4, 136.4, 133.1, 132.5, 131.5, 131.0, 130.1, 129.7, 128.7, 128.1, 127.1, 127.0, 124.8, 118.7, 51.1, 21.7, 13.6; HRMS calc. for

 $C_{26}H_{23}NO_4SCl ([M+H]^+): 480.1036$, found: 480.1036.

Methyl 4-(4-fluorophenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 66-68°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 7.19 (t, J = 8.3 Hz, 6H), 7.06 (t, J = 8.7 Hz, 2H), 3.29 (s, 3H), 2.42 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 162.1(d, J = 245.0 Hz), 145.1, 138.3, 1365, 131.8 (d, J = 8.0 Hz), 131.5, 131.1, 130.1, 129.9, 129.7, 128.6, 127.1, 127.0, 125.0, 118.9, 114.9 (d, J = 21.0 Hz), 51.1, 21.7, 13.6;

HRMS calc. for C₂₆H₂₃NO₄SF ([M+H]⁺): 464.1332, found: 464.1334.

Methyl 4-(4-bromophenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 166-168°C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 7.38-7.28 (m, 5H), 7.21-7.16 (m, 4H), 7.10 (dd, J = 8.3, 1.7 Hz, 2H), 3.30 (s, 3H), 2.43 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 145.2, 138.4, 136.4, 133.0, 131.9, 131.5, 131.1, 131.0, 130.1, 129.8, 128.7, 127.1,

127.0, 124.8, 121.4, 118.7, 51.1, 21.7, 13.6; HRMS calc. for C₂₆H₂₃NO₄SBr ([M+H]⁺): 524.0531, found: 524.0524.

Methyl 4-(4-methoxyphenyl)-5-methyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxyl-

ate

Mp: 94-96°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.26 (m, 5H), 7.24-7.13 (m, 6H), 6.91 (d, J = 7.8 Hz, 2H), 3.82 (s, 3H), 3.30 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 158.7, 145.0, 137.9, 136.6, 131.5, 131.2, 129.9, 129.7, 128.6, 127.1, 127.0, 126.1, 125.7,

119.4, 113.4, 55.2, 51.1, 21.6, 13.7; HRMS calc. for C₂₇H₂₆NO₅S ([M+H]⁺): 476.1532, found: 476.1534.

Methyl 5-methyl-2-phenyl-4-(p-tolyl)-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 110-112°C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 7.23-7.16 (m, 6H), 7.14-7.08 (m, 2H), 3.29 (s, 3H), 2.44 (s, 3H), 2.39 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 145.0, 137.9, 136.7, 136.6, 131.6, 131.2, 130.8, 130.0, 129.9, 129.7, 128.7, 128.6, 127.1, 127.0, 126.01, 119.4, 51.1,

21.7, 21.3, 13.7; HRMS calc. for C₂₇H₂₆NO₄S ([M+H]⁺): 460.1583, found: 460.1577.

Methyl 5-methyl-4-(naphthalen-2-yl)-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 128-130°C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.79 (m, 3H), 7.70 (s, 1H), 7.48-7.45 (m, 2H), 7.40-7.28 (m, 6H), 7.21 (t, J = 8.3 Hz, 4H), 3.26 (s, 3H), 2.49 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 145.2, 138.3, 136.6, 133.2, 132.5, 131.6, 131.2, 130.3, 129.8,

128.8, 128.7, 128.5, 128.0, 127.7, 127.4, 127.2, 127.1, 126.1, 126.0, 125.9, 119.3, 51.1, 21.7, 13.8; HRMS calc. for $C_{30}H_{26}NO_4S$ ([M+H]⁺): 496.1583, found: 496.1578.

Methyl 5-methyl-2-phenyl-4-(thiophen-2-yl)-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 114-116°C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 6H), 7.23-7.14 (m, 4H), 7.07-7.01 (m, 1H), 6.93 (d, *J* = 2.8 Hz, 1H), 3.34 (s, 3H), 2.52 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 145.3, 137.8, 136.3, 134.4, 131.7, 131.6,

130.9, 129.8, 128.7, 128.1, 127.2, 127.0, 126.8, 126.0, 119.7, 118.3, 51.2, 21.7, 13.8; HRMS calc. for C₂₄H₂₂NO₄S₂ ([M+H]⁺): 452.0990, found: 452.0983.

(E)-methyl 5-methyl-2-phenyl-4-styryl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 110-112°C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 2H), 7.39-7.24 (m, 8H), 7.21-7.12 (m, 5H), 6.61 (d, J = 16.5 Hz, 1H), 3.48 (s, 3H), 2.68 (s, 3H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 145.1, 138.8, 137.5, 136.4,

132.7, 131.4, 131.1, 130.1, 129.7, 128.6, 128.5, 127.5, 127.0, 126.9, 126.3, 122.5,

120.5, 118.1, 51.3, 21.6, 14.2; HRMS calc. for $C_{28}H_{26}NO_4S$ ([M+H]⁺): 472.1583, found: 472.1572.

Methyl 4,5-dimethyl-2-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 84-86°C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 7.3 Hz, 1H), 7.30-7.25 m, 4H), 7.17 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 7.6 Hz, 2H), 3.46 (s, 3H), 2.46 (s, 3H), 2.39 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 144.8, 138.8, 136.6, 131.6, 131.4,

129.6, 128.9, 128.3, 126.8, 126.7, 119.8, 118.9, 50.9, 21.6, 12.7, 10.7; HRMS calc. for C₂₁H₂₂NO₄S ([M+H]⁺): 384.1270, found: 384.1274.

Methyl 5-methyl-4-phenyl-2-(p-tolyl)-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 138-140°C; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 4H), 7.31-7.29 (m, 1H), 7.22-7.19 (m, 4H), 7.13-7.09 (m, 4H), 3.30 (s, 3H), 2.43 (s, 3H), 2.39 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 145.0, 138.4, 138.3, 136.6, 134.1, 131.4,

130.1, 129.8, 129.7, 128.1, 127.9, 127.8, 127.1, 126.0, 119.2, 51.1, 30.9, 21.6, 13.7; HRMS calc. for C₂₇H₂₆NO₄S ([M+H]⁺): 460.1583, found: 460.1587.

Methyl 2-(4-fluorophenyl)-5-methyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 108-110°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.29 (m, 5H), 7.24-7.19 (m, 4H), 7.19-7.12 (m, 2H), 6.99 (t, *J* = 8.5 Hz, 2H), 3.31 (s, 3H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 163.0 (d, *J* = 247.0 Hz), 145.3, 136.8,

136.5, 133.9, 133. 5 (d, J = 8.3 Hz), 130.2, 130.1, 129.8, 127.9, 127.2, 127.0, 126.0, 119.4, 114.1(d, J = 22.0 Hz), 51.1, 21.7, 13.6; HRMS calc. for C₂₆H₂₃NO₄SF ([M+H]⁺): 464.1332, found: 464.1332.

Methyl 2-(4-bromophenyl)-5-methyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 164-166°C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 2H), 7.40-7.28 (m, 5H), 7.25-7.17 (m, 4H), 7.07 (d, J

= 8.2 Hz, 2H), 3.32 (s, 3H), 2.43 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 145.3, 136.6, 136.4, 133.8, 133.1, 130.4, 130.3, 130.1, 129.8, 127.9, 127.2, 127.0, 126.2, 123.2, 119.4, 51.2, 21.7, 13.6; HRMS calc. for C₂₆H₂₃NO₄SBr ([M+H]⁺): 524.0531, found:524.0525.

Methyl 2-(4-chlorophenyl)-5-methyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 134-136°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 4H), 7.30-7.19 (m, 7H), 7.13 (d, *J* = 8.2 Hz, 2H), 3.31 (s, 3H), 2.44 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 145.3, 136.7, 136.4, 134.8, 133.8, 132.9, 130.4, 130.1,

129.8, 129.6, 127.9, 127.3, 127.2, 127.0, 126.2, 119.4, 51.2, 21.7, 13.6; HRMS calc. for C₂₆H₂₃NO₄SCl ([M+H]⁺): 480.1036, found: 480.1032.

Methyl 2-(3-chlorophenyl)-5-methyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 90-92°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.31 (m, 6H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.26-7.18 (m, 5H), 6.95 (s, 1H), 3.31 (s, 3H), 2.46 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 145.4, 136.4, 136.2, 133.8, 132.8, 131.4,

130.5, 130.1, 130.0, 129.83, 128.7, 128.3, 127.9, 127.2, 127.1, 126.0, 119.3, 51.1, 21.7, 13.6; HRMS calc. for C₂₆H₂₃NO₄SCl ([M+H]⁺): 480.1036, found: 480.1037.

Methyl 2-(2-chlorophenyl)-5-methyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 88-90°C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.38-7.34 (m, 4H), 7.32-7.28 (m, 3H), 7.26-7.22 (m, 4H), 3.32 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 145.3, 136.3, 135.9, 135.1, 134.0, 133.3, 131.2,

130.3, 130.1, 129.9, 129.8, 128.7, 127.8, 127.40, 127.1, 126.1, 125.5, 118.7, 51.1, 21.7, 13.3; HRMS calc. for C₂₆H₂₃NO₄SCl ([M+H]⁺): 480.1036, found: 480.1039.

carboxylate

Mp: 120-122°C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.40-7.35 (m, 4H), 7.33-7.29 (m, 1H), 7.28-7.21 (m, 4H), 7.15-7.12 (m, 2H), 7.08 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.23 (s,

3H), 2.50 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 158.3, 145.1, 138.1, 136.6, 134.5, 134.0, 130.6, 130.2, 130.1, 129.9, 129.7, 129.6, 127.9, 127.8, 127.1, 126.2, 126.1, 125.3, 119.5, 118.9, 105.8, 55.4, 51.1, 21.6, 13.8; HRMS calc. for C₃₁H₂₈NO₅S ([M+H]⁺): 526.1688, found: 526.1689.

Methyl 2,5-dimethyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 80-82°C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.37-7.24 (m, 5H), 7.18-7.08 (m, 2H), 3.52 (s, 3H), 2.73 (s, 3H), 2.43 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 145.2, 137.0, 136.9, 134.7, 130.2, 130.1, 128.9, 127.7,

126.8, 126.6, 125.7, 116.7, 51.0, 21.6, 13.5, 13.2; HRMS calc. for $C_{21}H_{22}NO_4S$ ([M+H]⁺): 384.1270, found: 384.1263.

Ethyl 5-methyl-2,4-diphenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 116-118°C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.32 (m, 5H), 7.32-7.27 (m, 3H), 7.24-7.18 (m, 6H), 3.77 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.39 (s, 3H), 0.67 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 145.1, 138.0, 136.6, 134.1, 131.7, 131.3,

130.2, 129.9, 129.7, 128.6, 127.9, 127.1, 127.0, 126.1, 119.5, 60.0, 21.7, 13.6, 13.3; HRMS calc. for C₂₇H₂₆NO₄S ([M+H]⁺): 460.1583, found: 460.1590.

Ethyl 2,5-dimethyl-4-phenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 112-114°C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.29-7.17 (m, 5H), 7.04 (d, J = 6.9 Hz, 2H), 3.89 (q, J = 7.0 Hz, 2H), 2.66 (s, 3H), 2.34 (s, 3H), 2.20 (s, 3H), 0.80 (t, J = 7.0 Hz,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 145.2, 137.0, 136.9, 135.0, 130.2, 130.1, 128.7, 127.7, 126.8, 126.7, 125.8, 116.9, 59.9, 21.6, 13.6, 13.4, 13.2; HRMS calc. for C₂₂H₂₄NO₄S ([M+H]⁺): 398.1426, found: 398.1428.

Synthesis of Compound I

A solution of Cu(OTf)₂ (5.4 mg, 0.015 mmol) and L₆ (6.3 mg, 0.0165 mmol) in 1 mL of anhydrous methanol placed in an oven-dried Schlenk flask was stirred at room temperature under a nitrogen atmosphere for 1 h. A solution of propargylic esters **1a** (63 mg, 0.36 mmol), β -enamino esters **2a** (99 mg, 0.3 mmol) and Et₃N (50 uL, 0.36 mmol) in 2 mL of anhydrous methanol was added. The mixture was stirred at room temperature for 12 h. The solvent was removed under reduced pressure to give the crude product which was purified by silica gel chromatography to afford the corresponding pyrroles product **I** as white solid.

Methyl 5-methyl-2,4-diphenyl-1-tosyl-1H-pyrrole-3-carboxylate

Mp: 112-114°C; ¹H NMR (400 MHz, DMSO) δ 7.55-7.50 (m, 2H), 7.48-7.41 (m, 5H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.17-7.12 (m, 1H), 7.08 (t, *J* = 7.3 Hz, 2H), 6.72 (d, *J* = 7.1 Hz, 2H), 5.56 (t, *J* = 2.0 Hz, 1H), 4.76 (t, *J* = 1.9 Hz, 1H), 4.69 (t, *J* = 2.1 Hz, 1H), 3.23 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 163.3, 151.9, 148.8, 145.6,

142.2, 133.6, 131.6, 130.4, 130.2, 129.9, 128.8, 128.0, 127.7, 127.3, 127.1, 117.3, 101.6, 52.3, 51.6, 21.6; HRMS calc. for $C_{26}H_{24}NO_4S$ ([M+H]⁺): 446.1426, found: 446.1445.

Reference

[1] a) P. Fang, X.-L. Hou, Org. Lett. 2009, 11, 4612-4615; b) M. Bhanuchandra, M. R.
Kuram, A. K. Sahoo, J. Org. Chem. 2013, 78, 11824-11834.

[2] a) M. Yoshida, C.Sugimura, *Tetahedron Lett.* 2013, 54, 2082-2084; b) M.
Yoshida, K. Kinoshita, K. Namba, *Org. Biomol. Chem.* 2014, *12*, 2394-2403.

[3] a) J.-D. Huang, X.-P. Hu, Z.-C. Duan, Q.-H. Zeng, S.-B. Yu, J. Deng, D.-Y. Wang,
Z. Zheng, *Org. Lett.* 2006, *8*, 4367; b) J.-D. Huang, X.-P. Hu, S.-B. Yu, J. Deng, D.-Y.
Wang, Z.-C. Duan, Z. Zheng, *J. Mol. Catal. A: Chem.* 2007, 270, 127.

$\begin{array}{c} 59\\ 58\\ 34\\ \end{array}$	$\begin{array}{c} 122526 \\ 12252256 \\ 12252256 \\ 122556 \\ 122556 $
૦૦ ૦૦ ૦૦	2.24.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
\vee	

PROTON CDC13 {D:\NMR400\02T2} nmr 18

P31CPD CDC13 {D:\NMR400\02T2} nmr 18

PROTON CDC13 {D:\NMR400\02T2} nmr 3

C13CPD CDC13 {D:\NMR400\02T2} nmr 3

$\begin{array}{c} 44\\ 43\\ 42\\ 38\\ 38\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	

HCJ-1999(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 17

-3.27

 ~ 2.41 ~ 2.34

HCJ-1999(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 17

111273333333333333333333333333333333333	30	44 40
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.	55
		$\leq$

HCJ-2000-3(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 14









HCJ-2001(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 18



-3.30

 $< \frac{2.43}{2.41}$ 







HCJ-2002(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 19

2.7



 $\underset{2.41}{\overset{2.42}{\phantom{2.41}}}$ 





$\begin{array}{c} 55 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ $	30	$43 \\ 40$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ć	20
		\searrow

HCJ-2003(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 26

HCJ-2003(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 26

HCJ-2004(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 27

HCJ-2004(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 27

111011102233333333333333333333333333333	29	44 339 36 36
	3.	~~~

HCJ-2005(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 28

HCJ-2005 (CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 28

$\begin{array}{c} 8833\\ 121333356\\ 121333356\\ 121333356\\ 121333356\\ 121333356\\ 121333356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 12133356\\ 121356\\ 121356\\ 12$	26	$49 \\ 40$
~~~~~		5. 10
		57

HCJ-2007(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 20







337 3353 335333333333333333333333333333	34	$52 \\ 39$
6	3.	~~~~
		N 7

HCJ-2033(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 8





HCJ-2033(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 8









HCJ-2185 PROTON CDC13 {D:\NMR400\02T2} nmr 23





S39

- 3.4761

-- 2.6761 -- 2.3988







HCJ-2193-1 PROTON CDC13 {D:\NMR400\02T2} nmr 54





3.4629

 $\begin{array}{c} 4616 \\ 3862 \\ 1455 \end{array}$ 

555



HCJ-2193-1 C13CPD CDC13 {D:\NMR400\02T2} nmr 54



3353333333333333333333333333333333333	30	$^{43}_{39}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~
		52

HCJ-2028(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 25

S48

S56

$\begin{array}{c} 66\\ 66\\ 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	52	73 73 28
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Э	~~~~
	I	2 55

HCJ-2038(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 12





HCJ-2038 (CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 12





333333333333333333333333333333333333	80 75 75	44	69 65
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ri ri ri ri	~~~	000
		52	

HCJ-2037-2(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 11

HCJ-2037-2(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 11

$\begin{array}{c} 560 \\ 223 \\ 051 \\$	92 88 87	66 34 20	81 80 78
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5.2.2	000
		$\sim$ $\sim$ $\sim$	

HCJ-2036(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 9





HCJ-2036(CDC13) C13CPD CDC13 {D:\NMR400\02T2} nmr 9











HCJ-2188 PROTON DMSO {D:\NMR400\02T2} nmr 22





HCJ-2188 PROTON CDC13 {D:\NMR400\02T2} nmr 51



3.2943

- 2.4544 - 2.4121