## Supplementary Information



FIGURE 1 – a) FTIR-ATR spectra and b) DSC scans for all samples

The quantification of the crystalline phases present in the samples was performed using the specific bands at 766 cm<sup>-1</sup> and 840 cm<sup>-1</sup>, identified with the presence of the  $\alpha$ - and  $\beta$ -phases, respectively, and following the method explained in <sup>1</sup>. Assuming the samples are composed just by the  $\alpha$  and  $\beta$  phases, the  $\beta$  phase content is calculated by:

$$F(\beta) = \frac{X_{\beta}}{X_{\alpha} + X_{\beta}} = \frac{A_{\beta}}{(K_{\beta} / K_{\alpha})A_{\alpha} + A_{\beta}}$$
(1)

were  $F(\beta)$  represents the  $\beta$  phase content;  $A_{\alpha}$  and  $A_{\beta}$  the absorbencies at 766 and 840 cm<sup>-1</sup>, corresponding to the  $\alpha$  and  $\beta$  phase material;  $K_{\alpha}$  and  $K_{\beta}$  are the absorption coefficient at the respective wave number and  $X_{\alpha}$  and  $X_{\beta}$  the degree of crystallinity of each phase. The value of  $K_{\alpha}$  is 6.1×10<sup>4</sup> and  $K_{\beta}$  is 7.7×10<sup>4</sup> cm<sup>2</sup>/mol <sup>1</sup>.

The degree of crystallinity of the PVDF-CTFE membranes was obtained by the following equation:

$$X_{c} = \frac{\Delta H_{m}}{x \left( \Delta H_{100\% cryst.} \right)_{\alpha} + y \left( \Delta H_{100\% cryst.} \right)_{\beta}} \times 100$$
(2)

where x is the weight fraction of the  $\alpha$  phase, y is the weight fraction of the  $\beta$  phase, ( $\Delta H_{100\% crystalline}$ ) $_{\alpha}$  is the melting enthalpy of pure crystalline  $\alpha$ -PVDF and ( $\Delta H_{100\% crystalline}$ ) $_{\beta}$  is the melting enthalpy of pure crystalline  $\beta$ -PVDF which is reported to be 93.04 J/g and 103.4 J/g respectively <sup>1</sup>.

1. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Progress in Polymer Science 2014, 39, 683-706.