Supplementary materials

High Performance Perovskite Solar Cells by a Vapor Based

Method with Optimized PbI_{2} Precursor Films

Yanke Peng ${ }^{\text {* }}$, Gaoshan Jing ${ }^{1 *}$, Tianhong Cui ${ }^{1,2^{*}}$
${ }^{1}$ State Key Laboratory of Precision Measurement Technology and Instruments,
Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
${ }^{2}$ Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

Testing platform for solar cell long term stability measurement

A PMMA sealed box is used to maintain the humidity at a constant value when the solar cell is heated. The heater module (TC-48-20, TE technology, INC., Traverse city, USA) was used to main the heating temperature at a constant value. Temperature control accuracy of this testing platform is $\pm 1^{\circ} \mathrm{C}$. Humidity control accuracy of this testing platform is $\pm 3 \%$ (relative humidity).

Figure S1. Testing platform for perovskite solar cell long term stability measurement

Figure S2. Actual temperature curve in the quartz recorded by a wireless thermometer when the furnace heating up program was set as: 30 min to heat up from the room temperature to $70{ }^{\circ} \mathrm{C}$, maintaining for 30 min , taking 20 min to heat up to $110{ }^{\circ} \mathrm{C}$, maintaining for three hours, then end the program. Finally, the quartz tube cooled down to the room temperature.

Table S1. Statistics of ten HPCVD solar cells before and after heat-treated at $80^{\circ} \mathrm{C}$ for 50 h and 96 h .

No.	$J_{S C}\left(\mathrm{~mA} \mathrm{~cm}^{-2}\right)$	$V_{O C}(\mathrm{~V})$	FF	PCE (\%)			
Before treatment							
Avg.	$\mathbf{1 6 . 5 5}$	$\mathbf{0 . 9 6}$	$\mathbf{0 . 5 4}$	$\mathbf{8 . 9}$			
1	18.80	0.97	0.63	11.8			
2	16.60	0.95	0.50	8.1			
3	15.70	0.95	0.51	7.8			
4	16.70	0.97	0.47	7.8			
5	17.10	0.98	0.49	8.5			
6	17.60	0.96	0.58	10.1			
7	16.30	1.01	0.59	10.0			
8	19.00	0.89	0.56	9.8			
9	12.30	0.98	0.54	6.7			
10	15.40	0.91	0.54	7.8			
Avter heated at $80{ }^{\circ} \mathrm{C}$ for						50 h	
1	$\mathbf{1 6 . 0 6}$	$\mathbf{0 . 9 4}$	$\mathbf{0 . 5 1}$	$\mathbf{7 . 9}$			
2	18.90	0.95	0.52	9.6			
3	16.60	0.95	0.50	8.1			
4	14.40	0.92	0.33	4.5			
5	16.00	0.96	0.47	7.4			
6	15.50	0.95	0.53	8.0			
7	17.60	0.96	0.57	9.9			
8	16.30	0.97	0.60	9.8			
9	19.30	0.89	0.51	9.0			
10	10.60	0.90	0.49	4.8			
15.40	0.91	0.54	7.8				

After heated at $80{ }^{\circ} \mathrm{C}$ for 96 h				
Avg.	$\mathbf{1 4 . 5 3}$	$\mathbf{0 . 9 2}$	$\mathbf{0 . 4 8}$	$\mathbf{6 . 9}$
1	14.00	0.90	0.49	6.4
2	15.20	0.91	0.45	6.4
3	10.90	0.88	0.31	3.1
4	15.60	0.98	0.47	7.4
5	14.10	0.96	0.49	6.8
6	17.10	0.97	0.58	9.9
7	16.10	1.00	0.61	10.1
8	17.20	0.82	0.53	7.7
9	11.70	0.92	0.44	4.9
10	13.40	0.89	0.47	5.8

