Removal of methylene blue from waste water under low power irradiation source by Zn, Mn co-doped TiO₂ photocatalyst

Poonam Benjwal^a and Kamal K. Kar^{a, b, *}

^aAdvanced Nanoengineering Materials laboratory, Materials Science Programme,

Indian Institute of Technology Kanpur, Kanpur-208016, India,

^bAdvanced Nanoengineering Materials laboratory, Department of Mechanical

Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India

Email: <u>kamalkk@iitk.ac.in</u>, Fax # 0512-2597408, Phone # +91-512-2597687

*Corresponding author

Kamal K. Kar

^aAdvanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India,

^bAdvanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, IndiaE-mail address: kamalkk@iitk.ac.in (Kamal.K.Kar). Fax: +91 512 2597408

Fig. S1 Flow chart for the sol-gel synthesis of TiO₂ nanoparticles

g. S2. SEM images of (a) TP0 (b) TP1 and (c) TP2

S1. The whole mechanism of the MB degradation in presence of visible light over TiO_2 can be explained by the following photocatalytic reactions

The MB molecules can be completely degraded by theses redox chain of reaction. In this photosensitization process, the presence of TiO_2 is very essential as it plays a very efficient role of electro transfer to electro acceptor [1]. Thus, it can be said that in presence of visible light, the degradation of MB dye over blank TiO_2 is occurred due to the photosensitization process.

Fig. S3: Photocatalytic mechanism of TiO₂ under Visible Light Illumination

Fig. S4. Photocatalytic degradation of MB degradation in 10 hours by single Zn and Mn doped (1.0, 2.0 at.%) in presence of (a) visible light and (b) UV light.

Fig. S5. The photocatalytic degradation of phenol over TP0, TP1 and TP2 under visible light irradiation.

Fig. S6. Comparison of relative concentration of undoped and co-doped TiO_2 under the presence of high power 450W solar visible light source.

Fig. S7. Bar plot showing the degradation of MB dye for 4 cycle using TP1 catalyst in presence of visible light.

Table S1: Comparison of UV and visible radiation in terms of % degradations for 10 h and the
rate constants.

Substrate	Samples	Rate constant (visible) k (h ⁻¹)	Rate constant (UV) k (h ⁻¹)
	TP0	0.06	0.07
Methylene blue (MB)	TP1	0.12	0.13
	TP2	0.10	0.11

Dopant concentration in TiO ₂ (at.%)	Dye	Degradation time (t; min)	Intensity of visible irradiation source (L ₀ ; Watt)	Maximum degradation $(1-C/C_0; S)$	Degradation/ Watt min (Φ)= (S / $I_0 \times t$) × 10 ⁻⁵
Zn ²⁺ (0.37)	RhB*	30	Halogen bulb- 1000W	0.99	~3.0 [2]
$Mn^{2+}(0.2)$	MB	360	Philips Bulb-300W	0.90	~ 0.8 [3]
$Pt^{2+}(0.3)$	Phenol	180	Hg(Xe) Bulb-500 W	0.9	~1 [4]
Fe ³⁺ (0.1)	MB	180	Xenon Bulb-450W	0.65	~ 0.248 [5]
N	MB	160	Xenon Bulb-150 W	0.9	~ 37.5 [6]
Fe + N (0.5)	RhB*	240	Halogen Bulb- 1000W	0.99	~ 0.41 [7]
Cu+N (0.9, 3.1)	Xylenol Orange	40	Hg Bulbe-500W	0.5	~ 2.5 [8]
Fe+ B (2.8, 19)	Toluene	360	Halogen Bulb-150W	0.8	~ 1.4 [9]
Zn+Mn (1.0, 1.0)	MB	600	LED Bulbs-2W	0.8	~ 66.6 (Present study)

Table S2: Comparison of visible light degradation efficiencies (Φ) of various TiO₂ photocatalysts doped with different transition metal dopants form literature to that of the present study.

CR*= Chromophore, RhB*= Rhodamine B,

References:

- T. Wu, G. Liu, J. Zhao, H. Hidaka and N. Serpone, *J. Phys. Chem. B*, 1998, 102, 5845-5851.
- [2] Y. Zhao, C. Li, X. Liu, F. Gu, H. Du and L. Shi, *Appl. Catal.*, *B*, 2008, **79**, 208-215.
- [3] Q. R. Deng, X. H. Xia, M. L. Guo, Y. Gao and G. Shao, *Mater. Lett.*, 2011, 65, 2051-2054.
- [4] J. Choi, H. Park and M. R. Hoffmann, J. Phys. Chem. C, 2009, 114, 783-792.
- [5] J. Zhu, J. Ren, Y. Huo, Z. Bian and H. Li, J. Phys. Chem. C, 2007, 111, 18965-18969.
- [6] Y. Zhao, X. Qiu and C. Burda, *Chem. Mater.*, 2008, **20**, 2629-2636.
- Y. Cong, J. Zhang, F. Chen, M. Anpo and D. He, J. Phys. Chem. C, 2007, 111, 10618-10623.
- [8] K. Song, J. Zhou, J. Bao and Y. Feng, J. Am. Ceram. Soc., 2008, 91, 1369-1371.
- [9] R. Khan, S. W. Kim, T.-J. Kim and C.-M. Nam, *Mater. Chem. Phys.*, 2008, 112, 167-172.