Electronic Supplementary Information

for

Unexpected efficiency enhancement of flexible dye-sensitized solar cells by repeated outward bending

Xue-Long He,^{a,b} Mei Liu,^a Guan-Jun Yang,^{*,a} Baizeng Fang^{*,c} and Chang-Jiu Li^a

- ^a State Key Laboratory for Mechanical Behavior of Materials, School of Materials
 Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
 Tel.: +86-29-82665299, E-mail address: ygj@mail.xjtu.edu.cn (G.J. Yang)
- ^b Jiangxi Province Key Laboratory of Precision Drive and Control, Nanchang 330099, PR China.
- ^c Department of Chemical and Biological Engineering, University of British Columbia,
 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada, Email: <u>bfang@chbe.ubc.ca</u>

Figure S1 Typical XRD pattern for the commercial P25 TiO₂.

Figure S2 Photovoltaic performance before bending and after 10000 cycles of bending with a radius of 18 mm.

Figure S3 illustrates a generalized equivalent circuit for a complete DSC, where *R*s is the equivalent series resistance, R_{CO} and C_{CO} stand for the resistance and capacitance at the TCO/TiO₂ interface, respectively. R_{TCO} and C_{TCO} represent the resistance and capacitance at the exposed TCO/electrolyte interface, respectively. R_t represents the electron transport resistance in the TiO₂ film, while R_{ct} stands for the charge transfer resistance at the TiO₂/dye/electrolyte interface. C_{μ} represents the capacitance of TiO₂ film, and Z_D stands for the Nernst diffusion resistance of the electrolyte. R_{Pt} and C_{Pt} stand for the charge

transfer resistance and electric double layer capacitance at the Pt/electrolyte interface, respectively.

Figure S3 Equivalent circuit for the flexible DSC.