Electronic Supplementary Information for

Effects of Ga doping and hollow structure on the band-structures and

photovoltaic properties of SnO2 photoanode dye-sensitized solar cells

Yandong Duan,^{‡ab} Jiaxin Zheng,^{‡a} Nianqing Fu,^{bc} Jiangtao Hu,^a Tongchao Liu,^a Yanyan Fang,^b Qian Zhang,^a Xiaowen Zhou,^b Yuan Lin^{*ab} and Feng Pan^{*a}

^aSchool of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

^bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^cDepartment of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

^dState Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China ‡These authors contributed equally to this work.

^{*}Corresponding author: linyuan@iccas.ac.cnTel: 86-10-82615031 Fax: 86-10-82617315

^{*}Corresponding author: panfeng@pkusz.edu.cnTel: 86-755-26033200

The Fermi level of the photoanode in a DSSC is an important parameter because the difference between the red-ox potential in the quasi-Fermi level of the anode and the electrolyte determines the V_{oc} of the DSSCs. Flat band potentials (E_{fb}) can be obtained from the intercept on the potential axis of Mott-Schottky plots using the equation

$$\frac{1}{C^2} = \left(\frac{2}{A^2 e\varepsilon\varepsilon_0 N_D}\right) \left(E - E_{fb} - \frac{kT}{e}\right)$$

where k the Boltzmann constant, T the absolute temperature, ε the dielectric constant of the SnO₂ layer, ε_0 the vacuum permittivity, e the electron charge, C represents the capacitance of the space charge region, N_D the donor density, E the applied potential, E_{fb} the flat band potential, and A is the active surface. As shown in Figure S1,the Mott-Schottky plots for the SnO₂, Sn_{0.99}Ga_{0.01}O₂, Sn_{0.97}Ga_{0.03}O₂, Sn_{0.95}Ga_{0.05}O₂ films at 1000Hz in the dark provided values of E_{fb} of 0.095, 0.016, -0.133, and -0.290 V (vs. SCE).

Fig. S1. Mott-Schottky plots of the SnO_2 and the Ga-doped SnO_2 films prepared on FTO substrates.

Fig. S2. Diffuse reflectance spectra of the photoelectrodes with nano SnO_2 , nano hollow SnO_2 and nano hollow $Sn_{0.97}Ga_{0.03}O_2$. The reflectance of the SnO_2 and $Sn_{0.97}Ga_{0.03}O_2$ hollow sphere films are much higher than that of the SnO_2 nanocrystalline films, indicating that the particles in the hollow sphere film have a higher light scattering ability than those in the SnO_2 nanocrystalline film.

Fig. S3. Specific resistivity as a function of doping level for $Sn_{1-x}Ga_xO_2$ films.

Fig. S4. Normalized device performance under constant illumination for 100h measured in air (DSSCs based on $Sn_{0.97}Ga_{0.03}O_2/TiCl_4$). The values plotted in Fig. S4. are the averages over five samples. After 100 hrs, the conversion efficiency of DSSC is maintained at about 100% to the initial one.

Fig. S5. (a) SEM image of the $Sn_{0.97}Ga_{0.03}O_2$ synthesized from chemicals. (b)-(d) Elemental mapping performed from the SEM image (a). The elements (Sn, O, Ga) are uniformly distributed in the sample, indicative of the high homogeneity of the $Sn_{0.97}Ga_{0.03}O_2$ particles.

Figure S6. Calculated total and orbital resolved densities of states for the pure SnO_2 and 6.25% Ga doped SnO_2 . The Fermi level is set to zero.

Ref.	Morphology or	Diamatan	Synthetic method or	Film	η (%) (no surface	η (%)(after surface
	structure	Diameter	manufacturer	thickness	treatment)	treatment) ^a
1	SnO ₂ nanoparticles	3-5 nm	Alfa Aesar	10 µm	1.74	MgO/7.21
2	SnO ₂ nanowire	20-200nm	reactive vapor transport	25-30 μm	2.1	TiCl ₄ /4.1
3	SnO ₂ hollow microspheres	1-2 μm	hydrothermal	10 µm	1.4	TiCl ₄ /5.65
4	SnO ₂ nanoflower	1 μm	hydrothermal	8-10 μm	3.00	TiCl ₄ /6.78
5	SnO ₂ nanoparticles	15 nm	Alfa Aesar		1.7	CaCO ₃ /5.4
6	SnO_2 nanopowder	<100 nm	Sigma-Aldrich	8μm	3.65	MgO/6.40
7	SnO ₂ nanotube	110 nm	electrospinning	13µm	0.99	TiCl ₄ /5.11
8	SnO ₂ hollow nanospheres	200 nm	hydrothermal		0.86	TiCl ₄ /6.02
9	SnO ₂ octahedra	0.5-1.8 μm	sonochemical	13.2 μm		TiCl ₄ /6.8
10	mesoporous SnO ₂ agglomerates	200-600 nm	molten salt method	8 µm	3.05	TiCl ₄ /6.23
11	SnO_2 nanofibers	200 nm		8.7 μm		TiCl ₄ /4.63
Our work	Ga-SnO ₂ hollow microspheres	11.6-15.9 nm	hydrothermal	8 µm	3.56	TiCl ₄ /7.11

Table S1 The reported high values of η obtained in the DSSCs based on different SnO₂ photoanode structures.

^asurface treatment method and the corresponding photon-to-electron conversion efficiency.

	Experiment for SnO ₂	Calculation SnO ₂	for	$Calculation \ for \\ Sn_{0.9375}Ga_{0.0625}O_2$	Calculation for 6.25% Ga interstitial doping
a (Å)	4.74 ^b	4.76		4.75	4.81
c (Å)	3.19 ^b	3.21		3.20	3.22
-					

Table S2. Calculated structural parameters a and c for pure SnO_2 and 6.25% Ga doped

SnO₂.

^bPhys. Rev. B. 81, 245216, 2010

References

- 1. M. K. I. Senevirathna, P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara and A. Konno, *Sol. Energy Mater. Sol. C*, 2007, **91**, 544-547.
- 2. S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, *Adv. Funct. Mater.*, 2008, **18**, 2411-2418.
- 3. J. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai and H. X. Yang, *Adv. Mater.*, 2009, **21**, 3663.
- X. C. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, *Chem. Mater.*, 2011, 23, 3938-3945.
- K. Perera, S. G. Anuradha, G. R. A. Kumara, M. L. Paranawitharana, R. M. G. Rajapakse and H. M. N.
 Bandara, *Electrochim. Acta*, 2011, 56, 4135-4138.
- P. Docampo, P. Tiwana, N. Sakai, H. Miura, L. Herz, T. Murakami and H. J. Snaith, *J. Phys. Chem. C*, 2012, **116**, 22840-22846.
- C. T. Gao, X. D. Li, B. G. Lu, L. L. Chen, Y. Q. Wang, F. Teng, J. T. Wang, Z. X. Zhang, X. J. Pan and E.
 Q. Xie, *Nanoscale*, 2012, 4, 3475-3481.
- 8. H. Wang, B. Li, J. Gao, M. Tang, H. B. Feng, J. H. Li and L. Guo, *Crystengcomm*, 2012, **14**, 5177-5181.
- Y. F. Wang, K. N. Li, C. L. Liang, Y. F. Hou, C. Y. Su and D. B. Kuang, J. Mater. Chem., 2012, 22, 21495-21501.
- P. N. Zhu, M. V. Reddy, Y. Z. Wu, S. J. Peng, S. Y. Yang, A. S. Nair, K. P. Loh, B. V. R. Chowdari and S. Ramakrishna, *Chem. Commun.*, 2012, **48**, 10865-10867.
- 11. R. Kasaudhan, H. Elbohy, S. Sigdel, Q. Hui, W. Qufu and Q. Qiquan, *Electron. Device Lett., IEEE* 2014, **35**, 578-580.