## **Supplementary Information**

## for

## Self-Assembly of Dipeptide Sodium Salts Derived from Alanine: A Molecular Dynamics Study

Jichao Sun, Kai Guo, Heng Zhang, Shiling Yuan \*

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan

250100, China

<sup>\*</sup>Corresponding Author, E-mail: shilingyuan@sdu.edu.cn.

Tel: +86-531-88365896. Fax: +86-531-88564464

| System | N-dipeptide                  | N-solvent | T (K) | Time (ns) |
|--------|------------------------------|-----------|-------|-----------|
| Ι      | 110, (L, L)                  | 6672      | 298   | 200       |
| II     | 110, ( <b>D</b> , <b>D</b> ) | 6672      | 298   | 200       |
| III    | 110, (L, D)                  | 6672      | 298   | 200       |
| IV     | 110, ( <b>D</b> , <b>L</b> ) | 6672      | 298   | 200       |

 Table S1. Summary of the Simulated Systems

**Table S2. Force Filed Parameters** 

| Van der Waals Interaction        |                                   |                                                  |  |  |  |  |
|----------------------------------|-----------------------------------|--------------------------------------------------|--|--|--|--|
| Angle type                       | $\sigma$ (nm) $\epsilon$ (kJ/mol) |                                                  |  |  |  |  |
| С                                | 0.33611                           | 0.40587                                          |  |  |  |  |
| СН                               | 0.37998 0.31394                   |                                                  |  |  |  |  |
| CH <sub>2</sub>                  | 0.39199                           | 0.48959                                          |  |  |  |  |
| CH <sub>3</sub>                  | 0.38750                           | 0.73227                                          |  |  |  |  |
| H(N)                             | 0.23734                           | 0.11838                                          |  |  |  |  |
| Ν                                | 0.29760                           | 0.87677                                          |  |  |  |  |
| 0                                | 0.26259                           | 1.72504                                          |  |  |  |  |
| Bond Interaction                 |                                   |                                                  |  |  |  |  |
| Bong type                        | Ideal bond length                 | Force constant $K_{\rm b}$                       |  |  |  |  |
|                                  | $b_0 (nm)$                        | $(10^{6}$ kJmol <sup>-1</sup> nm <sup>-4</sup> ) |  |  |  |  |
| CH <sub>3</sub> -CH <sub>2</sub> | 0.1520                            | 5.43e <sup>6</sup>                               |  |  |  |  |
| CH <sub>2</sub> -CH <sub>2</sub> | 0.1520                            | 5.43e <sup>6</sup>                               |  |  |  |  |
| CH <sub>1</sub> -CH <sub>3</sub> | 0.1530                            | 7.15e <sup>6</sup>                               |  |  |  |  |
| CH <sub>1</sub> -C               | 0.1530                            | 7.15e <sup>6</sup>                               |  |  |  |  |
| CH <sub>1</sub> -N               | 0.1470                            | 8.71e <sup>6</sup>                               |  |  |  |  |

| C-N                                               | 0.13                 | 380                                         | 1.10e <sup>7</sup>          |  |  |  |  |  |
|---------------------------------------------------|----------------------|---------------------------------------------|-----------------------------|--|--|--|--|--|
| N-H                                               | 0.10                 | 000                                         | $1.87e^{7}$                 |  |  |  |  |  |
| С=О                                               | 0.12                 | 250                                         | 1.34e <sup>7</sup>          |  |  |  |  |  |
| C=O (COO <sup>-</sup> )                           | 0.12                 | 265                                         | 1.31e <sup>7</sup>          |  |  |  |  |  |
| Angle Interaction                                 |                      |                                             |                             |  |  |  |  |  |
| Angle type                                        | Ideal bond           | l angle $	heta_0$                           | Force constant $K_{\theta}$ |  |  |  |  |  |
|                                                   | (deg                 | ree)                                        | (kJ/mol)                    |  |  |  |  |  |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | 111                  | 1.0                                         | 530                         |  |  |  |  |  |
| CH <sub>2</sub> -C=O                              | 121                  | 0.0                                         | 685                         |  |  |  |  |  |
| CH <sub>2</sub> -C-N                              | 115                  | 115.0                                       |                             |  |  |  |  |  |
| O=C-N                                             | 121                  | 121.4                                       |                             |  |  |  |  |  |
| C-N-H                                             | 120                  | 120.0                                       |                             |  |  |  |  |  |
| C-N-CH <sub>1</sub>                               | 122                  | 2.0                                         | 700                         |  |  |  |  |  |
| H-N-CH <sub>1</sub>                               | 115                  | 5.0                                         | 460                         |  |  |  |  |  |
| N-CH <sub>1</sub> -C                              | 111                  | 0.0                                         | 530                         |  |  |  |  |  |
| N-CH <sub>1</sub> -CH <sub>3</sub>                | 111                  | 1.0                                         | 530                         |  |  |  |  |  |
| C-CH <sub>1</sub> -CH <sub>3</sub>                | 109                  | 109.5                                       |                             |  |  |  |  |  |
| CH1-C=O                                           | 121                  | 0.0                                         | 685                         |  |  |  |  |  |
| CH <sub>1</sub> -C-N                              | 115                  | 5.0                                         | 610                         |  |  |  |  |  |
| CH <sub>1</sub> -C=O (COO                         | -) 117               | 117.0                                       |                             |  |  |  |  |  |
| O=C-O                                             | O=C-O 126.0          |                                             | 770                         |  |  |  |  |  |
| Torsion Interaction                               |                      |                                             |                             |  |  |  |  |  |
| Torsion                                           | Ideal dihedral angle | Force constant $K_{\zeta}$                  | , m                         |  |  |  |  |  |
|                                                   | ζ0 (degree)          | (kJmol <sup>-1</sup> degree <sup>-2</sup> ) |                             |  |  |  |  |  |
| -CH <sub>n</sub> -                                | 0.00                 | 5.92                                        | 3                           |  |  |  |  |  |
| C-C-C-N                                           | 0.00                 | 1.00                                        | 6                           |  |  |  |  |  |
| C-C-N-C                                           | 180.00               | 33.50                                       | 2                           |  |  |  |  |  |
| C-N-C-C                                           | 180.00               | 1.00                                        | 6                           |  |  |  |  |  |
| N-C-C-N                                           | 0.00                 | 1.00                                        | 6                           |  |  |  |  |  |

| N-C-C=              | =0         | 180.00 | 1.00       |      | 6          |  |  |
|---------------------|------------|--------|------------|------|------------|--|--|
| Torsion Interaction |            |        |            |      |            |  |  |
| Atom                | Charge (e) | Atom   | Charge (e) | Atom | Charge (e) |  |  |
| C1                  | 0.003      | C11    | 0.002      | C18  | 0.262      |  |  |
| C2                  | -0.003     | C12    | 0.006      | 02   | -0.433     |  |  |
| C3                  | 0.000      | C13    | -0.006     | C21  | 0.000      |  |  |
| C4                  | 0.002      | C14    | -0.049     | N2   | -0.229     |  |  |
| C5                  | 0.000      | C15    | 0.026      | H2   | 0.250      |  |  |
| C6                  | -0.002     | C16    | 0.302      | C19  | 0.036      |  |  |
| C7                  | -0.002     | 01     | -0.377     | C20  | 0.339      |  |  |
| C8                  | -0.002     | N1     | -0.354     | 03   | -0.566     |  |  |
| С9                  | -0.002     | H1     | 0.229      | O4   | -0.566     |  |  |
| C10                 | -0.002     | C17    | 0.108      | C22  | 0.000      |  |  |

\* The parameters were derived from GROMOS 45a3 united-atom force field.



Fig. S1. Molecular structures of the dipeptides and the original structures of system I (a) and system II (b). Dipeptides are shown in lines. Water molecules and Na<sup>+</sup> are represented by red and green dots, respectively.





Fig. S2. Time evolution of (a) additive energy of peptides, water molecules and sodium ions. (b) van der Waals interaction energy between peptide molecules, (c) Coulomb interaction energy between peptides and sodium ions. As an example of peptide molecule (**D**, **D**).



Fig. S3. System I: the analysis of radius of fibril (with an error of 0.1 nm). The carboxyl groups are shown in red, and other hydrophilic groups and alkyl chains of dipeptide molecules are shown in blue and grey, respectively.

The carbon atom of carbonyl group near the alkyl chain was defined as the end of hydrophilic dipeptide molecule, thus the radius of hydrophobic core, R1, is calculated in Fig. S3a. According to ninety percent of the peak height<sup>1</sup>, it is about 0.9 nm. This means that the hydrophilic shell around the fibril is about 1.0 nm from R1 to R2. It indicates that more water molecules or ions can be located in the 1.0 nm hydrophilic shell around the nanostructure. These water molecules or ions have important effect on the stabilization of nanostructure in the solution through strong Hbonding or electrostatic interaction.

We note that in Li's experiment,<sup>2-3</sup> the radius of self-assembly is about several decades nanometers. It is far more than our simulated radius of fibril. We think that the self-assembly structure in Li's experiment is aggregated by many fibril like our simulated system. On the other hand, maybe our simulated fibril is the basic unit of dipeptide self-assembly in Li's experiment. The simulated nanostructure also can give some information at the molecular level as the experimental supplement.



Fig. S4. System II: views of hydrophilic groups of dipeptide molecules (L, L) (a) at 200 ns, suggested model (b) and real density distribution (c) of hydrophilic groups on the fibril. The color bar of (c) is used to identify the low or high number density.



Fig. S5. System III: views of hydrophilic groups of dipeptide molecules (**D**, **L**) (a) at 200 ns, suggested model (b) and real density distribution (c) of hydrophilic groups on the fibril. The color bar of (c) is used to identify the low or high number density.



Fig. S6. System IV: views of hydrophilic groups of dipeptide molecules (**D**, **L**) (a) at 200 ns, suggested model (b) and real density distribution (c) of hydrophilic groups on the fibril. The color bar of (c) is used to identify the low or high number density.



Fig. S7. System I: the structure of water molecules and ions around the carboxyl group of dipeptide. Radial distribution functions of water oxygen (OW) and Na<sup>+</sup> around the carboxyl group. Carbon atoms, carbonyl oxygen and sodium ion are represented by gray, red and green balls.

By comparing RDF of sodium ions and water oxygen around the carboxyl group, we found that the sodium ions are mainly concentrated in the first hydration shell of carboxyl group. And because of strong electrostatic and hydrogen bond interaction, three regions, one in front of two carboxyl oxygen atoms and two along the direction of each carbon-oxygen bond of carboxyl group, are occupied around the carboxyl group.



b

Fig. S8. System II: the interaction energy per dipeptide molecule including total energy and VDW and Coulomb terms for system II of dipeptide molecule (L, L). a, the energy of peptide and water molecules or sodium ions; b, the individual energy between the hydrophilic and hydrophobic parts of dipeptide. All data are averaged using the last 20 ns MD simulations.

## References

- (1) F. F. Gao, H. Yan,; Q. W. Wang, S. L. Yuan, Phys. Chem. Chem. Phys., 2014. 16, 17231-17237.
- (2) Y. Li, B. Z. Li, Y. T. Fu, S. W. Lin, Y. G. Yang, Langmuir, 2013, 29, 9721-9726.
- (3) Y. T. Fu, B. Z. Li, Z. B. Huang, Y. Li, Y. G. Yang, Langmuir, 2013, 29, 6013-6017.