Supporting Information

for

QM/MD simulations on the role of SiO₂ in polymeric insulation

materials

Baozhong Han, *^{ac} Menggai Jiao,^b Chengcheng Zhang,^a Chunyang Li,^a Zhijian Wu,^b Ying Wang^{*ab} and Hui Zhang^a

^a Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, Harbin,150080, PR China

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

* Corresponding authors. E-mail: ywang_2012@ciac.ac.cn; hbzhlj@163.com

Figure Caption:

Figure S1. The last snapshots at 60 ps for a-c) Model S_{1-3}^{0} ; d-f) Model S_{1-3}^{1-3} ; g-i) Model S_{1-3}^{2-3} ; j-l)

Model S_{1-3}^{3-} ; m-o) Model S_{1-3}^{4-} ; p-r) Model L_{1-3}^{0} ; s-u) Model L_{1-3}^{1-} .

Figure S2. The RDF of Mulliken charge distribution around SiO_2 nanoparticles for each trajectory. a-e) for Model Sⁿ⁻ (n=0-4); f-g) for Model Lⁿ⁻ (n=0, 1).

Figure S3. The Lindman Index (L.I.) a, b) of C and all atoms for PE, S^{n-} , $L^{n-}(n=0, 1)$; c, d) of C and all atoms for $S^{n-}(n=0-4)$.

Figure S1. The last snapshots at 60 ps for a-c) Model S_{1-3}^{0} ; d-f) Model S_{1-3}^{1-} ; g-i) Model S_{1-3}^{2-} ; j-l)

Model S_{1-3}^{3-} ; m-o) Model S_{1-3}^{4-} ; p-r) Model L_{1-3}^{0} ; s-u) Model L_{1-3}^{1-} .

Figure S2. The RDF of Mulliken charge distribution around SiO_2 nanoparticles for each trajectory. a-e) for Model Sⁿ⁻ (n=0-4); f-g) for Model Lⁿ⁻(n=0, 1).

Figure S3. The Lindman Index (L.I.) a, b) of C and all atoms for PE, S^{n-} , L^{n-} (n=0, 1); c, d) of C and all atoms for S^{n-} (n=0-4).