Electronic Supplementary Information (ESI)

Fragmentation of Supported Gold Nanoparticles @ Agarose Film by Thiols and the Role of their Synergy in Efficient Catalysis

Neelam Gogoi and Devasish Chowdhury*

Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035, India.

Determination of loading of Au³⁺ into Agr film

For the study, first 2.5 % agarose hydrogel film (Agr) is prepared as mentioned in the experimental section. A 10 ml solution of 5 mM HAuCl₄ is prepared and its UV-visible spectrum is recorded. After this, the 10 ml solution of 5 mM HAuCl₄ is poured into the petri dish containing the prepared Agr film and kept as such for 1 h 15 min. After completion, the HAuCl₄ solution is recovered from the petri dish and its UV-visible spectrum is again recorded (Fig. S1). It is very clear from fig. S1 that there is considerable decrease in absorbance of HAuCl₄ solution after its loading into Agr film. The difference in the absorbance value of HAuCl₄ solution before and after loading into Agr film is considered for calculating the % Au³⁺ loading into Agr film.

Fig. S1 The UV-Visible analysis to determine the loading of Au³⁺ into the agarose film.

Fig. S2 The Scanning electron microscope (SEM) images of 2%TU-Au@Agr and 2%PDT-Au@Agr.

Fig. S3 The dynamic light scattering (DLS) analysis showing particle size of freshly prepared Au NPs solution, and TGA, CS, ME and MET fragmented Au NPs in solution.

Fig. S4 (A) The Uv-visible spectra showing comparative study of p-nitrophenol (p-NP) reduction by Agr. Au@Agr, TGA-Au@Agr, and CS-Au@Agr films. (B) A comparative plot of ln (C_t/C_0) vs time showing a pseudo-first order rate of reduction reaction of p-NP catalysed by Agr, Au@Agr, TGA-Au@Agr, and CS-Au@Agr films.

Fig. S5 The UV-visible absorption spectral analysis showing super catalysis of reduction reaction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) using $_{2\%}$ TGA-Au@Agr and $_{2\%}$ CS-Au@Agr as efficient catalysts. p-NP(r) is the p-nitrophenolate ions produced by adding freshly prepared excess solution of NaBH₄ to p-NP solution.

Fig. S6 The UV-visible spectra showing reusability study of _{2%}TGA-Au@Agr, _{4%}TGA-Au@Agr, _{2%}CS-Au@Agr and _{4%}CS-Au@Agr films catalysed p-NP reduction reaction.

Fig. S7 The SEM image of _{2%}TGA-Au@Agr film after its 1st catalytic cycle of p-NP reduction reaction.

Fig. S8 The molecular structure of all the six thiols used in the study.