Supporting informations for

Etching of unmodified Au@Ag nanorods: a tunable colorimetric

visualization for rapid and high selective detection of Hg2+

Rong Yang[†], Dan Song[†], Chongwen Wang[‡], Anna Zhu[†], Rui Xiao[‡], Jingquan Liu[†],

Feng Long^{†*}

[†]School of Environment and Natural Resources, Renmin University of China, 100872, Beijing,

[‡]Beijing Institute of Radiation Medicine, Beijing 100850, China

*Corresponding Author: longf04@mails.thu.edu.cn

Figure S1. The adsorption spectrum of Au nanorods. Insets: the photo of Au nanorods colloid and TEM images of Au nanorods.

Figure S2. The adsorption spectra of Au@Ag NRs with moderate Ag nanoshell upon the addition of different concentration of Hg²⁺. The insets: The color of Au@Ag NRs with moderate Ag nanoshell and different concentration of Hg²⁺

(a)

(b)

Figure S3. (a) and (b) were the EDS elemental analyses of Au@Ag NRs after addition of Hg²⁺ of low concentration (1 μ M) and high concentration (30 μ M), respectively.

Figure S4 The effect of pH on the absorption spectra of the Au@Ag NRs

Figure S5. The absorbance intensity of 412 nm, dip and 580 nm was related with Hg^{2+} concentration ranging from 0 to 267 $\mu M.$