SUPPORTING INFORMATION

Room-Temperature Palladium-Catalysed Suzuki-Miyaura

Coupling of Arylboric Acid with Aryl Chlorides†

Dan Wang, ^{‡a} Hong-Guan Chen, ^{‡a} Xin-Chuan Tian,^a Xiao-Xia Liang,^a

Feng-Zhen Chen^b and Feng Gao^{*a}

^a Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. China

^b School of bioengineering, Chengdu University, Chengdu 610106, R. R. China

gaofeng@sicau.edu.cn

TABLE OF CONTENTS

1. General Methods	2
	-
2. Procedure and characterization of Pd-catalyzed Suzuki reaction	2
3. References	14
4. NMR spectra	15
5. HRMS spectra	45

1. General Methods

All reactions were conducted under an inert atmosphere of high pure argon. Anhydrous dioxane and benzene (PhH) were purchased from Sigma-Aldrich and used without further purification. Dimethoxyethane (DME), tetrahydrofuran (THF) were dried by Na refluxing with benzophenone as indicator. ¹H and ¹³C NMR spectra were obtained on a Varian Unity INOVA 400/54 spectrometer in CDCl₃, CD₃OD or DMSO-*d*₆ with TMS as the internal standard. Mass spectra were obtained on a VG Auto spec 3000 or on a Finnigan MAT90 instrument. Silica gel H (Qingdao Sea Chemical Factory, Qingdao, China) was used for column chromatography. Spots on TLC (silica gel G) were detected by ultraviolet light. Commercially available reagents and solvents were purchased from Sigma-Aldrich, Aladdin, ChengDu Kelong Chemical Co.,Ltd., Duodian-Chemical and were directly used without further purification.

2. Procedure and characterization of Pd-catalyzed Suzuki reaction

General procedure for the Pd-catalyzed Suzuki cross-coupling of aryl chlorides with arylboronic acids:

An oven-dried 10 mL reaction vial was sealed with plug after been equipped with a stir bar and charged with aryl chloride (0.2 mmol), arylboronic acid (0.24 mmol, 1.2 equiv) and K_2CO_3 (55mg, 0.4mmol, 2equiv) under an inert atmosphere of high pure argon. A stock solution of Pd(OAc)₂ (6.28 mg, 0.028 mmol) and NiXantphos (23.19 mg, 0.042 mmol) in 7 mL of dry THF was prepared through 1h stirring under 45°C. For each reaction, a solution of Pd(OAc)₂ (0.896 mg, 0.004 mmol) and NiXantphos (3.312 mg, 0.006 mmol) in 1 mL of dry THF was taken up by syringe and added to the reaction vial, followed by the addition of 0.2 mL H₂O. The reaction mixture was then stirred for 6h at room temperature. The crude material was purified by chromatography on silica gel to give the desired products.

tBu CH_3 **4-tert-butyl-4'-methylbiphenyl (3a):** This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 1-chloro-4-methylbenzene (**2a**, 25.2 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (42.5 mg, 95% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹

^{tBu} **4-tert-butylbiphenyl** (**3b**): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and chlorobenzene (**2b**, 22.5 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (39.5 mg, 94% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹

tBu **C**I **4-tert-butyl-4'-chlorobiphenyl** (**3c**): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 1,4-dichlorobenzene (**2c**, 29.4 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (46.9 mg, 96% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.² tBu **F 4-tert-butyl-4'-fluorobiphenyl** (3d): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 1-chloro-4-fluorobenzene (2d, 26.11 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (44.7 mg, 98% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.³

 CF_3 **4'-tert-butyl-3-(trifluoromethyl)biphenyl** (**3e**): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 1-chloro-3-(trifluoromethyl)benzene (**2e**, 36.11 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (51.7 mg, 93% yield) as colorless liquid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁴

1-(4-(tert-butyl)phenyl)naphthalene (3f): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 1-chloronaphthalene (**2f**, 32.5 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (46.5 mg, 90% yield) as a colorless crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁵ *t*Bu

Cl² **2-(4-(tert-butyl)phenyl)-3-chloropyridine (3g):** This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2,3-dichloropyridine (**2g**, 29.6 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:20) to give the product (44.6 mg, 91% yield) as colourless liquid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8. 57 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 7.78 (dd, J_1 = 8.4 Hz, J_2 = 1.2 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.20 (dd, J_1 = 8.4 Hz, J_2 = 4.8 Hz, 1H), 1.36 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 156.5, 151.8, 147.5, 138.0, 135.3, 130.0, 129.0, 125.0, 122.8, 34.7, 31.3 ppm. HRMS calculated for C₁₅H₁₇ClN, 246.10440, found 246.10440, [M+H]⁺ and C₁₅H₁₆ClNNa, 268.08635, found 268.08628, [M+Na]⁺.

F 2-(4-(tert-butyl)phenyl)-3-fluoropyridine (3h): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-3-fluoropyridine (2h, 26.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:15) to give the product (44.9 mg, 98% yield) as colourless liquid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.55 (d, *J* = 4.8, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.54-7.48 (m, 1H), 7.29 (dd, *J*₁ = 8.4 Hz *J*₂ = 4.8 Hz, 1H 1H), 1.41 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 157.5 (d, *J* = 258.5 Hz), 152.3, 146.3 (d, *J* = 10.5 Hz), 145.3 (d, *J* = 5.5 Hz), 132.5 (d, *J* = 10.5 Hz), 128.4 (d, *J* = 5.5 Hz), 125.4, 124.0 (d, *J* = 50.5 Hz), 123.1 (d, *J* = 3.9 Hz), 34.7, 31.2 ppm. HRMS calculated for C₁₅H₁₆FNNa, 268.08635 , found 252.11590, [M+Na]⁺.

NC **2-(4-(tert-butyl)phenyl)nicotinonitrile (3i):** This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-Chloro-3-cyano pyridine (**2i**, 27.7 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (45.81 mg, 97% yield) as a white solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.86 (dd, J_1 = 4.8 Hz, J_2 = 1.6 Hz, 1H), 8.05 (dd, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.35 (dd, J_1 = 8.0 Hz, J_2 = 4.8 Hz, 1H), 1.36 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 160.9, 153.5, 152.6, 141.9, 134.3, 128.6, 125.7, 121.2, 117.9, 107.1, 34.8, 31.2 ppm. HRMS calculated for C₁₆H₁₆N₂Na, 259.12057, found 259.12052, [M+Na]⁺.

 O_2N **2-(4-(tert-butyl)phenyl)-3-nitropyridine (3j):** This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (**1a**, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-Chloro-3-nitropyridine (**2j**, 31.7 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (50.19 mg, 98% yield) as a light yellow solid. ¹H-NMR (400MHz, CDCl₃): $\delta_H 8.83$ (dd, $J_1 = 4.8$ Hz, $J_2 = 1.6$ Hz, 1H), 8.11 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.40 (dd, $J_1 = 8.0$ Hz, $J_2 = 4.8$ Hz, 1H), 1.34 (s, 9H).. ¹³C-NMR (100MHz, CDCl₃): δ_C 160.9, 153.4, 152.6, 141.9, 134.3, 128.6, 125.7, 121.2, 117.9, 107.1, 34.8, 31.2 ppm. HRMS calculated for C₁₅H₁₆N₂O₂Na, 279.11040, found 279.11042, [M+Na]⁺.

2-(4-(tert-butyl)phenyl)-5-(trifluoromethyl)pyridine

(3k): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:40) to give the product (55.23 mg, 99% yield) as a light yellow solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.93 (br.s, 1H), 7.98 (d, *J* = 8.8 Hz), 7.96 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 2H), 1.37 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 160.6 (d, *J* = 1.3 Hz), 153.4, 146.5 (q, *J* = 4.0 Hz), 135.1, 133.8 (q, *J* = 3.5 Hz), 127.0, 125.9, 124.6 (q, *J* = 280.5 Hz), 119.7, 34.8, 31.2 ppm. HRMS calculated for C₁₆H₁₆F₃NNa, 302.11271, found 302.11264, [M+Na]⁺.

^{HBU} CN 6-(4-(tert-butyl)phenyl)nicotinonitrile (31): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-Chloro-5-cyanopyridine (2l, 27.71 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:15) to give the product (46.75 mg, 95% yield) as a white solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.84 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 7.95-7.92 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 7.41 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 1.36 (s, 9H). ¹³C-NMR (100MHz, CDCl3): $\delta_{\rm C}$ 158.6, 153.6, 150.6, 134.5, 126.7, 126.7, 126.1, 122.8, 121.8, 121.0, 116.9, 34.8, 31.2 ppm. HRMS calculated for C₁₆H₁₆N₂Na, 259.12059, found 259.12057, [M+Na]⁺. ^tBu 3-(4-(tert-butyl)phenyl)pyridine (3m): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 3-Chloropyridine (2m, 19 μ L, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with petroleum ether) to give the product (27.46 mg, 65% yield) as a light yellow solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁶

tBu \sim 2-(4-(tert-butyl)phenyl)thiophene (3n): This reaction was performed following General Procedure with 4-*tert*-butylphenylboronic acid (1a, 42.7 mg, 0.24 mmol, 1.2 equiv) and 2-chlorothiophene (2n, 23.7mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (39.4 mg, 92% yield) as a white crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁷

CF₃ 2-phenyl-5-(trifluoromethyl)pyridine (4a): This reaction was

performed following General Procedure with phenylboronic acid (**1b**, 29.2 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:40) to give the product (42.8 mg, 96% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁸

reaction was performed following General Procedure with p-tolylboronic acid (1c,

32.4 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:40) to give the product (44.1 mg, 93% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁹

 H_3C 2-(m-tolyl)-5-(trifluoromethyl)pyridine (4c): This reaction was performed following General Procedure with m-tolylboronic acid (1d, 32.6 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:20) to give the product (44.5 mg, 94% yield) as a yellow crystal. ¹H-NMR (400 MHz, CDCl₃): δ_H 8.93 (s, 1H), 7.97 (dd, J_1 = 8.4 Hz, J_2 = 2.0 Hz, 1H), 7.86-7.79 (m, 3H), 7.40 (t, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 2.45 (s, 3H). ¹³C-NMR (100MHz, CDCl₃): δ_C 160.8, 146.5 (q, J = 4.6 Hz), 138.7, 137.9, 133.9 (q, J = 3.5 Hz) 130.8, 128.8, 127.9, 125.13, 124.6 (q, J = 280.5 Hz), 124.3, 120.1, 21.5 ppm.

 H_3C 2-(3,5-dimethylphenyl)-5-(trifluoromethyl)pyridine (4d): This reaction was performed following General Procedure with 3,5-dimethylphenylboronic Acid (1e, 35.9 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:10) to give the product (46.7 mg, 93% yield) as yellow liquid. ¹H-NMR (400 MHz, CDCl₃): δ_H 8.92 (br. s, 1H), 7.96 (dd, J_1 = 8.4 Hz, J_2 = 2.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.63 (s, 2H), 7.12 (s, 1H), 2.41 (s, 6H). ¹³C-NMR (100MHz, CDCl3): $\delta_{\rm C}$ 161.0, 146.5 (q, J = 4.6 Hz), 138.6, 137.9, 133.8 (q, J = 3.5 Hz), 131.7, 125.1, 124.8 (q, J = 280.5 Hz), 120.1, 21.43 ppm.

N = N + F **6'-methoxy-5-(trifluoromethyl)-2,3'-bipyridine** (4e): This reaction was performed following General Procedure with 4-methoxyphenylboronic acid (1f, 36.47 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (41.51 mg, 82% yield) as a white crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹⁰

2-(3-methoxyphenyl)-5-(trifluoromethyl)pyridine (4f):

This reaction was performed following General Procedure with 3-methoxyphenylboronic acid (**1g**, 36.47 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:10) to give the product (40.51 mg, 80% yield) as a brown yellow crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹¹

2-(4-phenoxyphenyl)-5-(trifluoromethyl)pyridine

(4g): This reaction was performed following General Procedure with (4-phenoxyphenyl)boronic acid (1h, 51.4 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude

material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (56.7 mg, 90% yield) as a white crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹²

O₂N CF₃ 2-(3-nitrophenyl)-5-(trifluoromethyl)pyridine (4h): This

reaction was performed following General Procedure with (3-nitrophenyl)boronic acid (**11**, 40 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:5) to give the product (50.4 mg, 94% yield) as a white crystal. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.98 (s, 1H), 8.90 (t, *J* = 2.0 Hz, 1H), 8.41 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H); ¹³C-NMR (100MHz, CDCl₃): $\delta_{\rm C}$ 157.8, 148.8, 146.9 (q, *J* = 4.6 Hz), 139.5, 134.4 (q, *J* = 3.5 Hz), 132.9, 130.0, 126.0 (q, *J* = 28.5 Hz), 125.6 (q, *J* = 280.5 Hz), 124.5, 122.1, 120.1 ppm. HRMS calculated for C₁₂H₇F₃N₂ O₂Na, 291.03518 , found 291.03528, [M+Na]⁺.

F-CF₃ 2-(4-fluorophenyl)-5-(trifluoromethyl)pyridine (4i): This

reaction was performed following General Procedure with p-Fluorophenylboronic acid (**1j**, 33.58 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:30) to give the product (44.8 mg, 93% yield) as a white crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹³

 $F_3C \longrightarrow CF_3$ N 5-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)pyrid

ine (4j): This reaction was performed following General Procedure with Trifluoromethylphenyl (1k, 45.58 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:30) to give the product (51.8 mg, 89% yield) as a white solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.98 (br. s, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 8.04 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 2H). ¹³C-NMR (100MHz, CDCl₃): $\delta_{\rm C}$ 159.0, 146.8 (q, *J* = 4.6 Hz), 141.1, 134.2 (q, *J* = 3.5 Hz), 131.8 (q, *J* = 324.9 Hz), 127.6, 125.9 (q, *J* = 28.5 Hz), 125.5 (q, *J* = 280.5 Hz), 122.6, 122.1, 120.3 ppm.

2-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)pyri

dine (4k): This reaction was performed following General Procedure with 3,5-Bis(trifluoromethyl)phenylboronic acid (1l, 61.9 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (2k, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:30) to give the product (63.2 mg, 88% yield) as a light yellow solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.00 (br. s, 1H), 8.52 (s, 2H), 8.09 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.98 (s, 1H), 7.95 (d, J = 8.4 Hz). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 157.2, 147.0 (q, J = 4.0 Hz), 139.7, 134.6 (q, J = 3.4 Hz), 132.4 (q, J = 334.0 Hz), 127.3 (q, J = 30.0 Hz), 126.3 (q, J = 332.2 Hz), 124.6 (d, J = 161.7 Hz), 123.5 (q, J = 35.7 Hz), 121.9 (d, J = 166.0 Hz), 120.2 ppm.

2-(naphthalen-1-yl)-5-(trifluoromethyl)pyridine (4l): This reaction was performed following General Procedure with Naphthalene-1-boronic acid (**1m**, 41.2 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:10) to give the product (52.4 mg, 96% yield) as a brown yellow crystal. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹⁴

CF₃ **2-(furan-2-yl)-5-(trifluoromethyl)pyridine (4m):** This reaction was performed following General Procedure with 2-Furanboronic acid (**1n**, 26.8 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:10) to give the product (29.84 mg, 70% yield) as brown yellow liquid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.82 (br. s, 1H), 7.93 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.78 (d, J = 8.4Hz, 1H), 7.58 (br. s, 1H), 7.19 (d, J = 3.6 Hz 1H), 6.57 (dd, $J_1 = 3.6$ Hz, $J_2 = 2.0$ Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 152.4, 152.1, 146.5 (q, J = 4.0 Hz), 144.5, 133.9 (q, J = 3.4 Hz), 124.4 (q, J = 280.8 Hz), 122.2, 117.8, 112.5, 111.0 ppm. HRMS calculated for C₁₀H₇F₃NO, 214.04742, found 214.04789, [M+H]⁺.

reaction was performed following General Procedure with 2-thiophenylboric acid (**10**, 30.7 mg, 0.24 mmol, 1.2 equiv) and 2-chloro-5-(trifluoromethyl) pyridine (**2k**, 36.3 mg, 0.2 mmol, 1.0 equiv). The crude material was purified by chromatography

on silica gel (eluted with EtOAc:petroleum ether = 1:20) to give the product (43.5 mg, 95% yield) as a white solid. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹⁵

H₃CO **3-(4-methoxyphenyl)pyridine** (5a): This reaction was performed following General Procedure with 4-Methoxyphenylboronic acid (1f, 1.6 g, 10.56 mmol, 1.2 equiv) and 3-Chloropyridine (2m, 0.82 mL, 8.8 mmol, 1.0 equiv). The crude material was purified by chromatography on silica gel (eluted with EtOAc:petroleum ether = 1:4) to give the product (0.97 g, 60% yield) as a brown solid. ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.81 (dd, J_1 = 2.4 Hz, J_2 = 0.8 Hz, 1H), 8.54 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 7.84 (dq, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.33 (ddd, J_1 = 8.0 Hz, J_2 = 4.8 Hz, J_3 = 0.8 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 159.7, 147.9, 147.8, 136.2, 133.9, 130.2, 128.2, 123.5, 114.5, 55.4 ppm. HRMS calculated for C₁₀H₁₂NO, 186.09134, found 186.09131, [M+H]⁺.

References

- (1) M. B. Andrus and C. Song, *Org. Lett.*, 2001, **3**, 3761.
- (2) P. B. D. de la Mare and E. A. Johnson, J. Chem. Soc., 1963, 4076.
- (3) A. K. Sahoo, T. Oda, Y. Nakao and T. Hiyama, *Adv. Synth. Catal.*, 2004, **346**, 1715.
- (4) S. P. Kelkheim, K.-H. B. Wolfersheim, N. T. Frankfurt and G. M. Sulzbach, US7094794, 2006.
- (5) J. Pschierer and H. Plenio, Eur. J. Org. Chem., 2010, 2010, 2934.
- (6) W. Zhu, C. Liu, L. Su, W. Yang, M. Yuan and Y. Cao, *J. Mater. Chem.*, 2003, **13**, 50.
- (7) R. Gerber, O. Blacque and C. M. Frech, *Dalton Trans.*, 2011, **40**, 8996.
- (8) J. Yang, S. Liu, J. F. Zheng and J. S. Zhou, *Eur. J. Org. Chem.*, 2012, **2012**, 6248.

- (9) S. Chen, G. Tan, W.-Y. Wong and H.-S. Kwok, *Adv. Funct. Mater.*, 2011, 21, 3785.
- (10) P. R. Parry, C. Wang, A. S. Batsanov, M. R. Bryce and B. Tarbit, *J. Org. Chem.*, 2002, **67**, 7541.
- (11) C. Li, T. Yano, N. Ishida and M. Murakami, *Angew. Chem.*, 2013, **125**, 9983.
- (12) C.-L. Ho, C.-S. Lam, N. Sun, D. Ma, L. Liu, Z.-Q. Yu, L. Xue, Z. Lin, H. Li, Y. H. Lo and W.-Y. Wong, *Isr. J. Chem.*, 2014, **54**, 999.
- (13) K. Fuchibe, Y. Ohshima, K. Mitomi and T. Akiyama, *J. Fluor. Chem.*, 2007, **128**, 1158.
- (14) A. Gavryushin, C. Kofink, G. Manolikakes and P. Knochel, *Tetrahedron*, 2006, **62**, 7521.
- (15) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, *J. Am. Chem. Soc.*, 2003, **125**, 12971

4-tert-butyl-4'-methylbiphenyl (3a)

Fig. S1 ¹H and ¹³C NMR spectra of 4-*tert*-butyl-4'-methylbiphenyl (**3a**)

4-tert-butylbiphenyl (3b)

Fig. S2 ¹H and ¹³C NMR spectra of 4-*tert*-butylbiphenyl (**3b**)

4-tert-butyl-4'-chlorobiphenyl (3c)

Fig. S3 ¹H and ¹³C NMR spectra of 4-*tert*-butyl-4'-chlorobiphenyl (**3c**)

4-tert-butyl-4'-fluorobiphenyl (3d)

Fig. S4 ¹H and ¹³C NMR spectra of 4-*tert*-butyl-4'-fluorobiphenyl (3d)

Fig. S5 ¹H and ¹³C NMR spectra of 4'-*tert*-butyl-3-(trifluoromethyl)biphenyl (3e)

1-(4-(tert-butyl)phenyl)naphthalene (3f)

Fig. S6 ¹H and ¹³C NMR spectra of 1-(4-(tert-butyl)) phenyl) naphthalene (3f)

Fig. S7 ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)-3-chloropyridine (3g)

Fig. S8 ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)-3-fluoropyridine (3h)

Fig. S9 ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)nicotinonitrile (3i)

2-(4-tert-butylphenyl)-3-nitropyridine (3j)

Fig. S10 ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)-3-nitropyridine (3j)

Fig. S11 ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)-5-(trifluoromethyl)pyridine (**3k**)

6-(4-tert-butylphenyl)nicotinonitrile (31)

Fig. S12 ¹H and ¹³C NMR spectra of 6-(4-*tert*-butylphenyl)nicotinonitrile (3l)

Fig. S13 ¹H and ¹³C NMR spectra of 3-(4-*tert*-butylphenyl)pyridine (**3m**)

2-(4-(tert-butyl)phenyl)thiophene (3n)

Fig. S14 ¹H and ¹³C NMR spectra of 2-(4-(*tert*-butyl)phenyl)thiophene (**3n**)

Fig. S15 ¹H and ¹³C NMR spectra of 2-phenyl-5-(trifluoromethyl)pyridine (4a)

2-p-tolyl-5-(trifluoromethyl)pyridine (4b)

Fig. S16 ¹H and ¹³C NMR spectra of 2-p-tolyl-5-(trifluoromethyl)pyridine (4b)

2-m-tolyl-5-(trifluoromethyl)pyridine (4c)

Fig. S17 ¹H and ¹³C NMR spectra of 2-m-tolyl-5-(trifluoromethyl)pyridine (4c)

Fig.18 ¹H and ¹³C NMR spectra of

2-(3,5-dimethylphenyl)-5-(trifluoromethyl)pyridine(4d)

Fig.19 ¹H and ¹³C NMR spectra of 6'-methoxy-5-(trifluoromethyl)-2,3'-bipyridine (4e)

Fig. S21 ¹H and ¹³C NMR spectra of 2-(4-phenoxyphenyl)-5-(trifluoromethyl)pyridine (**4g**)

Fig. S22 ¹H and ¹³C NMR spectra of 2-(3-nitrophenyl)-5-(trifluoromethyl)pyridine (**4h**)

2-(4-fluorophenyl)-5-(trifluoromethyl)pyridine (4i)

Fig. S23 ¹H and ¹³C NMR spectra of 2-(4-fluorophenyl)-5-(trifluoromethyl)pyridine (**4i**)

5-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)pyridine (4j)

48.3840 48.9788 48.9788 48.9788 48.1482 49.1260 49.126

Fig. S24 ¹H and ¹³C NMR spectra of 5-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)pyridine (**4j**)

2-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)pyridine (4k)

Fig. S25 ¹H and ¹³C NMR spectra of 2-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)pyridine (**4k**)

2-(naphthalen-1-yl)-5-(trifluoromethyl)pyridine (4l)

A 0.081 -4.0788 -4.0787 -4.0787 -4.0767 -4.0767 -4.016

Fig. S26 ¹H and ¹³C NMR spectra of 2-(naphthalen-1-yl)-5-(trifluoromethyl)pyridine (**4**I)

2-(furan-2-yl)-5-(trifluoromethyl)pyridine (4m)

3-(4-methoxyphenyl)pyridine (5a)

Pa864 Pa800 Pa800

Fig. S29 ¹H and ¹³C NMR spectra of 3-(4-methoxyphenyl)pyridine (**5a**)

		Mas	s Sp	ectrum S	SmartFor	mula	Repo	ort			
Analysis Info						Acq	uisition Da	ate 11	/30/2015	12:11:5	2 PM
Analysis Name	D:\Data\	201511\W	SQ-3G_0	00001.d		1942103114					
Method	ethod NaFA-original-pos					Ope	erator				
Sample Name	WSQ-3G	ì				Inst	rument	SO	lariX		
Comment											
Acquisition Para	meter										
Polarity	Pos	itive	n/a		n/a	No. c	of Laser Sh	ots	200		
n/a	n/a		No. of	Cell Fills	1	Lase	r Power		20.0 lp		
Broadband Low Mas	s 86.0) m/z	n/a		n/a	n/a			n/a		
Broadband High Mas	SS 150	0.0 m/z	n/a		n/a	n/a			n/a		
Acquisition Mode	Sing	JIE IVIS	n/a		n/a n/a	Calib	ration Data		Mon No	20 11.00	2.22
Source Accumulation	0.05	50 800	n/a		n/a	Data	Acquisition	Sizo	204857	8 30 TT.00	5.55
Ion Accumulation Tin	ne 0.30	0 sec	n/a		n/a	Anoc	lization	0120	Sine-Be	I Multiplic	ation
Flight Time to Acq. C	Cell 0.00	01 sec				1.000	Lation		0.110 20		auon
0.8- 0.6-				246.10440		3	268.08628				TMIS
0.2-					256.16699		11			284.0813	a
0.0	and strates		-	and the second	, may make a surger		ատերեր		din manufacture de la constante	and a second second	a and the second
220	230		240	250	26	i0	270		280		m/z
Meas. m	/z #	Formula		Score	m/z	err [ppm]	Mean err [ppm]	mSig ma	rdb	e [⊤] Conf	N-R ule
246.1044	40 1	C 15 H 17	CIN	100.00	246.10440	0.00	0.19	33.6	7.5	even	ok
268.0862	28 1	C 15 H 16	CIN Na	100.00	268.08635	0.25	0.37	27.8	7.5	even	ok

Bruker Compass DataAnalysis 4.0

printed: 11/30/2015 12:13:53 PM

Page 1 of 1

Fig. S30 HRMS spectra of 3g

Analysis Info						Acqu	uisition Date 1	1/30/2015 1	2:17:53 PM	
Analysis Name	D:\D	Data\201511\W	SQ-3H_0000	01.d						
Nethod	NaF	A-original-pos				Ope	rator			
Sample Name	WS	Q-3H				Instr	ument s	olariX		
Comment										
Acquisition Para	amete	er								
Polarity		Positive	n/a		n/a	No. o	f Laser Shots	200		
/a		n/a	No. of Cell	Fills	1	Laser	Power	20.0 lp		
roadband Low Ma	ISS	86.0 m/z	n/a		n/a	n/a		n/a		
roadband High Ma	ass	1500.0 m/z	n/a		n/a	n/a		n/a		
cquisition Mode		Single MS	n/a		n/a	121112	100 200	10101111010		
ulse Program		basic	n/a		n/a	Calibi	ration Date	Mon Nov 30 11:06:33		
iource Accumulation	on	0.050 sec	n/a		n/a	Data	Acquisition Size	2048576		
Flight Time to Acq.	Cell	0.300 sec 0.001 sec	n/a		n/a	Apod	zation	Sine-Beil Multiplication		
ntens. x10 ⁷ 1.0- 0.8-									+	
-						26	58.11079			
0.6-										
0.4-					252.11594		277.14	100		
-							1. 1			
0.2			230.13377	I.	· .					
0.0 200	210	220	230	240	250	260	270	280	290 r	
200	210	220	200	2-10	200	200	210			
Moas m/	7 #	Formula	Score	m/z	err [ppm]	Mean err l	ppm] mSigma	rdb e	Conf N-F	

Mass Spectrum SmartFormula Report

Bruker Compass DataAnalysis 4.0

printed: 11/30/2015 12:19:28 PM

Page 1 of 1

Fig. S31 HRMS spectra of 3h

Analysis Info						Acquisition Date	11/30/2015 1	:25:44 PM
Analysis Name	D:\Da	ata\201511\W	SQ-31_000001.	d				
Method	NaFA	-original-pos				Operator		
Sample Name	WSO	-31				Instrument	solariX	
Comment								
Acquisition Para	ameter	8.						
Polarity		Positive	n/a		n/a	No. of Laser Shots	200	
i/a		n/a	No. of Cell Fil	ls	1	Laser Power	20.0 lp	
Broadband Low Ma	ass	86.0 m/z	n/a		n/a	n/a	n/a	
Broadband High M	ass	1500.0 m/z	n/a		n/a	n/a	n/a	
Acquisition Mode		Single MS	n/a		n/a			
Pulse Program		basic	n/a		n/a	Calibration Date	Mon Nov	30 11:06:33
Source Accumulati	on	0.050 sec	n/a		n/a	Data Acquisition Size	2048576	
Flight Time to Acq.	Cell	0.300 sec 0.001 sec	n/a		n/a	Apodization	Sine-Bell	Multiplication
x108 3 2 1					259.12052			240 22046
								340.26216
07 7			000	0.10		000 000	000	

Mass Spectrum SmartFormula Report

Bruker Compass DataAnalysis 4.0

printed: 11/30/2015 1:27:16 PM

Page 1 of 1

Fig. S32 HRMS spectra of 3i

		Mas	s Spect	trum Si	martForn	nula F	Report				
Analysis Info						Acqui	sition Date	11/3	0/2015	1:33:56	PM
Analysis Name D:\Data\201511\W		ata\201511\W	SQ-3J_00000	1.d							
Method	NaFA	-original-pos				Opera	ator				
Sample Name	WSQ	-3J				Instru	ment	sola	riX		
Comment											
Acquisition Para	meter										
Polarity		Positive	n/a		n/a	No. of	Laser Shots	3	200		
n/a		n/a	No. of Cell F	Fills	1	Laser F	Power	1	20.0 lp		
Broadband Low Ma	SS	86.0 m/z	n/a		n/a	n/a		1	n/a		
Broadband High Ma	ass	1500.0 m/z	n/a		n/a	n/a		1	n/a		
Acquisition Mode		Single MS	n/a		n/a						
Pulse Program	100	basic	n/a		n/a	Calibra	ition Date		Mon Nov	30 11:06	:33
Source Accumulatio	on 	0.050 sec	n/a		n/a	Data A	cquisition Siz	e	20485/6	M. data Data	
Flight Time to Acg.	Cell	0.001 sec	11/d		n/a	Apoulz	allon		Sille-Dell	wutupiica	allon
x10 ⁸											+MS
0.8-											
1					279.11042						
0.6-											
0.4-											
0.2-											
h					l.		299.16176				
220		240	26	50	280		300		,	320	m/z
Meas. m	n/z	# Formula		Score	m/z	err [ppm]	Mean err	mSig ma	rdb	e⁻ Conf	N-F ule
279.110	42	1 C 15 H 16	N 2 Na O 2	100.00	279.11040	-0.07	-0.08	10.9	8.5	even	oł

Bruker Compass DataAnalysis 4.0 printed: 11/30/2015 1:35:01 PM Page 1 of 1

Fig. S33 HRMS spectra of 3j

		Mas	s Sp	ectrum	n Sma	artFor	mula	Repo	ort			
Analysis Info							Acc	uisition D	Date 11	/30/201	5 1:43:55	PM
Analysis Name	nalysis Name D:\Data\201511\WSQ							•				
Method	NaFA-	original-pos					Op	erator				
Sample Name Comment	WSQ-	3K					Inst	trument	sc	lariX		
Acquisition Para	meter											
Polarity	F	ositive	n/a		n/	a	No.	of Laser SI	hots	200		
n/a	n	/a	No. of	Cell Fills	1		Lase	er Power		20.0 lp		
Broadband Low Ma	ss 8	6.0 m/z	n/a		n/	a	n/a			n/a		
Broadband High Ma	ass 1	500.0 m/z	n/a		n/	a	n/a			n/a		
Acquisition Mode	S	ingle MS	n/a		n/	a						
Pulse Program	b	asic	n/a		n/	a	Calibration Date		le	Mon Nov 30 11:06:33		
Source Accumulatio	on O	.050 sec	n/a		n/	а	Data Acquisition Si		on Size	e 2048576		
Flight Time to Acq.	cell 0	.300 sec .001 sec	n/a		n/	а	Apo	dization		Sine-Be	eli Multiplic	ation
Intens.												+MS
×10°-												
2.0-												
-												
1.5-							685.4	43566				
1												
10												
1.07												
1												
0.5-												
0.0												
-			41	0.20901	1	576.43847					942.57	7718
0.0			4 Aller	Julipergroup	+	in here	A	Lynn,		,		
100	200	300	4	00	500	600		700	800		900	m/z
Meas. m	n/z	# Formula		Sc	ore	m/z	err	Mean	mSigm	rdb	e	N-R
							[ppm]	err [ppm]	a	l	Conf	ule
302.112	64	1 C 16 H 16	F 3 N Na	100	.00 3	02.11271	0.23	0.23	102.4	7.5	even	ok

Bruker Compass DataAnalysis 4.0 printed: 11/30/2015 1:45:59 PM Page 1 of 1

Fig. S34 HRMS spectra of 3k

Fig. S35 HRMS spectra of 3l

		Mas	s Spectr	um Sm	artForm	ula R	eport				
Analysis Info						Acquisi	tion Date	11/30	/2015	2:31:15	PM
Analysis Name	D:\Dat	a\201511\W	SQ-4H_000001.	d							
Method	NaFA-	original-pos				Operat	or				
Sample Name Comment	WSQ-4	4H				Instrum	nent	solari	х		
Acquisition Para	meter										
Polarity	P	ositive	n/a	r	n/a	No. of La	ser Shots	20	00		
n/a	n	/a	No. of Cell Fills	s 1		Laser Po	wer	20	0.0 lp		
Broadband Low Mas	ss 8	6.0 m/z	n/a	r	n/a	n/a		n/	a		
Broadband High Ma	ss 1	500.0 m/z	n/a	r	n/a	n/a		n/	a		
Acquisition Mode	S	ingle MS	n/a	r	n/a		100	1212		121212121212	
Pulse Program	b	asic	n/a		n/a	Calibration Date		Mon Nov 30 11:06:33			5:33
Source Accumulatio	n 0	.050 sec	n/a	r	va	Data Acc	8 ZU455/6 Sine Bell Multiplication				
Flight Time to Acq. (Cell 0	.300 sec	n/a	1	//a	Apodizat	ion	5	ine-Bell	williplica	ation
Intens.											+MS
×10 ⁸											
2.5											
-											
2.0											
-						685.4357	2				
1.5											
3											
1.0			441.2	9760							
0.5			393.20957								
-			di di di	55	3.45911			85	9.60543	963	52209
0.0+	200	,,,	المليوا جارية الإسبارية. 400	500	600	700	h	300	+ .	200	m/z
		000	400	500	000	100					
Meas. m	/z #	Formula		Score	m/z	err	Mean	mSi	rdb	e	N-R
						[ppm]	err	gma		Conf	ule
291.0352	28 1	C 12 H 7 F	3 N 2 Na O 2	100.00	291.03518	-0.33	-0.28	7.6	8.5	even	ok

Bruker Compass DataAnalysis 4.0 printed: 11/30/2015 2:33:00 PM Page 1 of 1

Fig. S36 HRMS spectra of 4h

Fig. S37 HRMS spectra of 4m

Bruker Compass DataAnalysis 4.0 printed: 11/30/2015 3:42:22 PM Page 1 of 1

Fig. S38 HRMS spectra of 5a